
FOCUS

SYS-CON
PUBLICATIONS

Feature: XML & Java: The Why and the How Israel Hilerio
XML is to Java as cream is to coffee 8

XML in Tango 2000 Tom Otvos
Integrate with popular database systems 10

Cover Story: XML in Oracle8i Martin Boyd
Is everyone jumping on the bandwagon? 20

Feature: Tagging the Data PART 3 Ajit Sagar
An online airline ticket store 30

CORBA Corner: Corba & XML Andrew Watson
These technologies won’t replace
each other – they’re complementary 40

Techniques: Hungarian Notation with Java Brian Farn
A technique for attaining maintainable code 50

XML DTD for EJB Deployment Descriptors Jason Westra
Sun moves toward a goal of interoperability for
enterprise beans among EJB vendor products 60

Book Reviews: Two recently published Israel Hilerio
books on XML applications are discussed Tija Ragas 64

XML & EDI: XML – The Next Generation EDI? Kang Lu
The vocabularies and dictionaries of
electronic business communications 50

XML & JAVA: THE HOW AND THE WHY

Straight Talking
Excelled Developers

by Alan Williamson pg. 16

SYS-CON Radio
Bob Sutor of OASIS

pg. 46

E-Java
The Mark(et) of XML

by Ajit Sagar pg. 24

IMHO
The WORA Battle

by Ethan Henry pg. 86

C
L
IE

N
T
 U

I

HTML

TicketQuery
Serialized

Java
Objects
(RMI)

BookingRequest

Purchase

Lease

Confirmation

Confirmation

Confirmation

TicketQuote

XML Documents
A

P
P

L
IC

A
T
IO

N
 S

E
R

V
IC

E
S

A
P

P
L
IC

A
T
IO

N
 S

E
R

V
IC

E
S

S
E

R
V

IC
E

 A
C

C
E

S
S

M
E

R
C

H
A

N
T
 S

E
R

V
E

R

CORBA
structures

Bytestreams

SUPPLIER

E
R

P

Integration

IM
PO

RT

EXPORT

Translator

Decoding

Encoding

VENDOR

E
R

P

Integration

IMPORT

EX
PO

RT

Translator

Decoding

VAN
(Network)

Decoding

Encoding

COMIN
G S

OON

DON’T
MIS

S IT
!

The World’s Leading Java Resource

One-stop Shopping
for Java Software

Volume:4 Issue:9, September 1999

There’s a new
player in town

Is everyone jumping
on the bandwagon?

There’s a new
player in town

Is everyone jumping
on the bandwagon?

2 SEPTEMBER 1999

BEA
www.weblogic.beasys.com

3SEPTEMBER 1999

Protoview
www.protoview.com

4 SEPTEMBER 1999

SUN
www.sun.com

5SEPTEMBER 1999

SEAN RHODY, EDITOR-IN-CHIEF

S
ometimes I think no one reads the editorial. Normally I receive
maybe no more than fifty comments concerning any editorial. I kid
myself that I do a good enough job lining up the content for the mag-
azine that no one has any complaints, and that they post each
month’s editorial on a wall for all to see. In reality, I hope it doesn’t
show up on that many dart boards – I know programmers.

Our JavaOne issue (JDJ Vol. 4, issue 6) wasn’t one of those times. I’ve been writing about
programming for over five years, and I’ve got to say that the response to my “XML Mambo”
column was nothing short of a landslide. I couldn’t have selected a more charged topic to write
about, a fact I’m very pleased with.

To recap briefly: my column questioned XML as the next “killer app.” While I feel XML is
important, it’s my thought that it’s overhyped. In my mind that was the gist of the article.

Now I’m either a genius or a schmuck.
The e-mails came fast and furious: those who thought I was so right – XML is just market-

ing hype – and those who thought I was a blithering idiot – hadn’t I ever tried to code server
pages in HTML? (Fact is, no, I haven’t. That sounds particularly ill-advised in my opinion.) But
from an editorial standpoint I had to stand up and take notice: XML is important to you.
Maybe it’s the next killer app…maybe it isn’t. Clearly though, you were concerned about the
impact XML would have on the world, particularly the Java community. And so was I.

In fact, we here (here being a virtual kind of thing: I’m in New Jersey, Alan’s in Scotland, Ajit’s
in Texas) at SYS-CON have been having numerous discussions concerning XML. So many that
I lose the thread of the topics regularly. One thing we all agree on though is that XML is some-
thing we need to cover closely.

Hence this issue. Welcome to our special focus issue on XML. On subsequent pages you’ll
find numerous articles relating to XML, and to Java. We’re exploring the topic, possibly in
preparation for bigger things. (Can you say XML Developer’s Journal? I knew you could.)
Because we know that it’s important to you. Either from a career possibility standpoint, or at
least for the impact it will have on your lives as Java programmers. Inside, you’ll get more
information about XML, as well as the opinions of our sharpest minds here at the
magazine.

I’d like to try to set some things straight, though. One, I don’t
think XML is pointless. To me it’s objects without the methods
– which sounds like a step backward, but may not be, as not every
object truly needs methods. Second, I think it will have a big impact on
e-commerce and EDI, as it’s a simple, powerful way to agree on data
transfers between organizations. It may even be a decent way to
allow larger companies to interact with Web sites without having to
have a human being sitting in front of a browser.

But I still stick to my guns when I say that XML is not the next
killer app in the way that Java was. XML won’t stop me from pro-
gramming in Java the way Java stopped me from programming
in PowerBuilder and, for others, VB or C++. It’s not going to change people’s minds
about platform-independent coding or free them from the Tyranny of Redmont (I’m not sure
Java did either, this is editorial license). Instead, I see XML as the SQL of the next century. SQL
is everywhere, but few people point to it as a revolutionary product. XML will be like that. We’ll
adopt it as a good idea that should have been there in the first place, but it won’t truly change
our lives as developers.

And that’s my opinion. As always, I welcome your comments and will try to respond to
them. I hope you find this issue intriguing, insightful and useful.

Two to Tango

F R O M T H E E D I T O R

AUTHOR BIO
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a principal consultant with Computer Sciences

Corporation, where he specializes in application architecture – particularly distributed systems.

sean@sys-con.com

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, JOHN OLSON, GEORGE PAOLINI,
KIM POLESE, SEAN RHODY, RICK ROSS,

AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
PRODUCTION EDITOR: CHERYL VAN SISE

ASSISTANT EDITOR: NANCY VALENTINE
EDITORIAL CONSULTANT: SCOTT DAVISON

TECHNICAL EDITOR: BAHADIR KARUV
PRODUCT REVIEW EDITOR: ED ZEBROWSKI

INDUSTRY NEWS EDITOR: ALAN WILLIAMSON
E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
MARTIN BOYD, BRIAN FARN, ETHAN HENRY, ISRAEL HILERIO,

KANG LU, JIM MATHIS, BERNIE METZGER, TIJA RAGAS, SEAN RHODY,
AJIT SAGAR, ANDREW WATSON, JASON WESTRA, ALAN WILLIAMSON

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE PLUS AIRMAIL POSTAGE

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PUBLISHER, PRESIDENT AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION: JIM MORGAN

VICE PRESIDENT, MARKETING: CARMEN GONZALEZ
ACCOUNTING MANAGER: ELI HOROWITZ
CIRCULATION MANAGER. MARY ANN MCBRIDE

ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA
MEGAN RING

JDJSTORE.COM: JACLYN REDMOND
ADVERTISING ASSISTANT: CHRISTINE RUSSELL

GRAPHIC DESIGNER: ROBIN GROVES
GRAPHIC DESIGN INTERN: AARATHI VENKATARAMAN

SYS-CON RADIO EDITOR: CHAD SITLER
WEBMASTER: ROBERT DIAMOND

WEB SERVICES INTERN: DIGANT B. DAVE
CUSTOMER SERVICE: SIAN O’GORMAN

ANN MARIE MILILLO
ONLINE CUSTOMER SERVICE: AMANDA MOSKOWITZ

E D I T O R I A L O F F I C E S
SYS-CON PUBLICATIONS, INC.

39 E. CENTRAL AVE., PEARL RIVER, NY 10965
TELEPHONE: 914 735-7300 FAX: 914 735-6547

SUBSCRIBE@SYS-CON.COM

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)
is published monthly (12 times a year) for $49.00 by

SYS-CON Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.
Application to mail at Periodicals Postage rates is pending at

Pearl River, NY 10965 and additional mailing offices.
POSTMASTER: Send address changes to:

JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,
39 E. Central Ave., Pearl River, NY 10965-2306.

© C O P Y R I G H T
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

739 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

6 SEPTEMBER 1999

PointBase
www.pointbase.com

7SEPTEMBER 1999

One
Realm
www.one-

realm.com

I
have to agree with JDJ’s editor-in-chief, Sean Rhody. The word XML seems
to spark technological fires. The JavaOne Conference issue of JDJ (Vol. 4,
issue 6) featured three articles on XML. Having written one of them, I share
the experience of the flood of e-mails regarding this obviously hot and con-
troversial topic. Aside from the folks who actually read what I write, others
who have little clue about programming have asked me what XML is. As

Sean mentioned, at JDJ we’ve been tossing e-mails back and forth about XML, where it is today,
what it may mean and what role SYS-CON Publications should play in its evolution.

Admittedly, a lot of market hype surrounds XML. But that’s true of any emerging technology.
Four years ago people’s opinions of Java ranged from a language that allowed you to do cute things
on the Web to a platform that would revolutionize distributed computing. XML is in its infancy
stages now. However, it holds the promise of unifying data formatting and display in computing
as well as fulfilling the dream of real cross-platform data exchange. Mind you, this is just a
promise. What it can do, and what it won’t do, will be clearer
over the next few years. Regardless, almost anyone who’s
doing anything in the world of e-commerce is taking a seri-
ous look at XML.

Before I ramble on, I guess I should introduce myself. I’ve
been one of JDJ’s contributing editors for more than two
years now. I started with the Cosmic Cup column on the
Java platform. This year my e-Java column covers Java
and e-commerce. The purpose of this focus issue is to
bring you comprehensive coverage of XML in all its
aspects – good and bad, because there’s a lot of confu-
sion about this technology in the marketplace today.
Our writers, who are experienced in various facets of
the computing industry, will bring you the best cov-
erage that can be found on this topic. This issue
serves as a sample of the kind of information we
intend to provide, possibly as an independent
XML publication.

The articles in this issue aren’t all “gung ho” XML. Israel Hilerio dis-
cusses the XML-Java relationship. He explains how XML relates to Java and why
it’s important for Java-based enterprise solutions, and dives into how the Java’s dynamic class
loading works with XML. Kang Lu covers EDI and XML. He brings a down-to-earth feel to the hype
that surrounds XML and what it’s really good for when complementing EDI. He relates this to the
real world of human-to-human communications. Michael Boyd discusses RDBMS vis-à-vis XML
and describes XML support in Oracle8i. In the spirit of the current issue, I discuss the XML-based
data interchange format for the Online Ticket Store series of articles. Jason Westra explains how
the newly released XML DTD for EJBs is becoming a standard for EJB deployment descriptors,
another example of the synergy between the worlds of Java and XML.

This issue also features columns that focus on XML technologies. In XML Corner Andrew Wat-
son talks about XML’s role in middleware, specifically with reference to CORBA. Andrew explains
how XML isn’t a silver bullet, but can serve a complementary role alongside CORBA in middleware
solutions. In this month’s e-Java I attempt to describe the various product categories that exist in
the XML market today.

In this issue we also offer JDJ’s interview with Bob Sutor, the chief strategy officer of OASIS. Bob
told us about OASIS and IBM’s strategy regarding XML. In addition, Israel Hilario and Tija Ragas
offer their reviews of two recently released XML books.

XML isn’t an application-building technology. It’s an enabler. Currently, XML is playing various
roles in distributed computing, the primary ones being data format definitions and data display.
Some purists look at it as a threat to existing technologies. XML fascists think it will solve world
hunger. In my opinion there’s a middle ground. I hope here at SYS-CON Publications we can help
you identify how you can apply XML in your application domain to solve real-world problems. We
look forward to hearing from you.

WRITTEN BY AJIT SAGAR

G U E S T E D I T O R I A L

Ajit_Sagar@i2.com

Welcome to XML!

8 SEPTEMBER 1999

JDJ FEATURE

Today the technical media talks a great deal about the Java platform
and its importance in creating a ubiquitous Internet execution environ-
ment. While most of us have bought into this concept, other technologies
that are emerging rapidly promise to smooth out the road to the computing
promised land. XML is one of these technologies that needs to be taken seri-
ously. There are many aspects of XML: Document Type Definitions (DTD),
Style Sheets (XSL), Viewers, parsers, HTML 4.0 and data. Out of these, perhaps
the most promising aspect of XML is its ability to represent data. Its ability to
describe its document content via its markup mechanism allows it to behave
like a universal data format for any number of applications.

Data representation using XML is a major step toward creating a ubiquitous
data environment. XML allows authors to define their own tags, which in turn
describe their content and make it possible to define a reusable data layer.
Authors are able to leverage their document structure and meaning to allow
the processing of special instructions on parts of their document. XML can
also be used by two or more entities as a particular exchange format for trans-
action protocols. This allows XML documents to be manipulated without
human interaction in batch mode. Some examples of exchange formats are
defined by the Rossetta Net and Microsoft’s BizTalk standards.

Why XML?
XML by itself has nothing to do with Java and vice versa. So why should the

Java community care about XML? The answer lies in the data layer. The Java
language alone doesn’t provide a mechanism for standardizing data formats.
Java programs need to rely on predefined, nonflexible, hard-coded formats for
reading information. This makes it difficult to extend or add functionality to a
program without breaking the existing code base.

Take a business scenario. Imagine that you do business with two partners,
one on the West Coast, the other on the East Coast. The latter expects his pur-
chase orders to contain three fields: part number, quantity and delivery date.
The West Coast partner expects her purchase orders to contain part number,
quantity, delivery date and preferred shipping carrier. Thus they each have dif-
ferent definitions of a purchase order. How will they converse? While this par-
ticular problem doesn’t seem that complicated, multiply the number of part-
ners by 10 or 100, each with his or her own definition of a purchase order. Now
we have a problem!

The naive approach to dealing with this problem would be to have our Java
code deal with the individual partners in a special way. The problem with this
approach is that each partner that requires special information forces the modifica-
tion of the Java code used to implement the business model.

XML is
to Java
as
cream
is to
coffee

XML&
WRITTEN BY ISRAEL HILERIO

GO
?1

The Why

9SEPTEMBER 1999

The ideal solution is to create a generic
Java program that doesn’t have to deal with
the individual requirements of each part-
ner. This can be done using XML. A core
exchange format can be set up between
you and your partners, and the individual
information required by each partner can
be abstracted in a properties file. The file
will be responsible for matching addition-
al information to a specific partner. In this
particular scenario each partner will deal
with the information he or she under-
stands; the remainder of the information
will be ignored. As new partners join your
“circle of friends,” the only information
that needs to be modified is the proper-
ties file and the XML data file. This is
where the power and flexibility of the
XML data format complements the
power and flexibility of the Java runtime
environment. Furthermore, a neat side
effect is that the properties file could
have been written using XML.

XML Documents and Dynamic Class Loading
When people talk about XML for data

representation, the most basic concept
they refer to is a document structure
with data. This structure, similar to a
populated C structure, outlines a tree
whose nodes describe the content
found on the leaves. Simple documents
don’t contain any behavior that defines
how to access the content on the tree.
Thus an XML document can be thought
of as a data object with accessor meth-

ods. This idea can be heavily leveraged to
implement exchange formats for transac-

tion protocols. More complex XML documents
leverage the concept of mobile agents to provide

behavior to XML documents. This approach leverages URL links embed-
ded inside the document as object repositories from which functionali-
ty can be downloaded over the Web and used to process specific docu-
ment tags. It is here that XML leverages the power of Java to extend its
data model to add behavior. The Java code contained in the URL links is
downloaded via the URL class loader mechanism contained in the Java
platform. Once the class bytecodes are downloaded over the Web, a class
object is created and temporary object instances are created and used to
evaluate the information contained inside the XML file. This enables the
dynamic extension of program behavior. Another way in which Java
components can be leveraged is to send mobile agents to evaluate infor-
mation stored inside XML files by analyzing the tags contained inside
the document.

How Does XML Speak Java?
By now I hope you’re convinced about the complementary roles of

Java and XML. Let’s move forward to explain how the two technologies
come together. XML–Java parsers hold the key to the answer. XML data
parsers written in Java provide two standard interfaces blessed by the
W3C:
• Document Object Model (DOM): The DOM provides a mechanism

that allows users to access the information contained in the document
in a tree fashion. Traversing the tree is left to the application writer.
Users of the DOM normally care about the hierarchy and structure of
the document.

• Simple API for XML (SAX): The SAX provides an event-driven method
for traversing the information in the document. Application writers
can register callbacks that are invoked when the beginning and end-
ing of a tag are parsed. Once inside the callback, the program is able to
discriminate against the tag information. Users of the SAX care about
specific tags inside the document, not necessarily its hierarchy.

I’d like to illustrate the power of the SAX and DOM interfaces by pro-
viding an example. Imagine you and your partners agree on a format for
exchanging purchase requests. The information needed by all partners
in order to process the purchase request is buyer name, buyer address,
order number, product ID, product name, quantity, delivery date and
requested price. This particular hierarchy identifies the root element of
the document as the PurchaseRequest. It contains three additional ele-
ments called BuyerName, BuyerAddress and OrderNumber. Multiple

 Java
GO

T X
ML?

100%
and the How

(continued on page 12)

10 SEPTEMBER 1999

WRITTEN BY TOM OTVOS

XML in Tango 2000XML in Tango 2000
Tango 2000 is a singularly powerful and

easy-to-use tool for creating dynamic, intelli-
gent Web sites that are integrated with popu-
lar database systems. Unlike other application
servers that take a simplistic “mail-merge” or
page-centric approach to page generation,
Tango 2000 uses a visual programming
metaphor that enables users to create power-
ful Web applications in record time without
having to be programming gurus.

A particularly powerful feature of Tango
2000 is its support of XML. In basic terms, XML
is supported as a first-class application data
type, enabling the developer to create XML (or,
more precisely, DOM) variables that represent
complex hierarchical data structures and
access, manipulate and stream them with
ease. An important point is that any XML
structure may be used; the developer isn’t lim-
ited to a single DTD (such as WDDX).

A good question at this point would be:
“Why should I want to create and manipulate
XML structures in a Web application?” One
reason is to enable a developer to separate
business logic from presentation. If you con-
sider a reasonably complex Web application
like a shopping basket or portfolio tracker, the
logic involved in accessing and processing
data (the business logic) can be quite intri-
cate. This typically involves grabbing data
from one or more data sources and applying
various business rules. The presentation logic
on the other hand is focused solely on putting
the data in front of the user in a visually com-
pelling way. In large applications these tasks
are often done by different people.

It’s pretty much axiomatic that most pro-
grammers don’t know much about user inter-
face design. Therefore, it’s a safe bet that the
person developing the business logic isn’t
going to be a hot HTML whiz. Likewise, the
presentation-capable person won’t necessar-
ily know SQL from Java. Enter XML, which
provides a lingua franca between these two
camps. As long as both agree on an XML
structure as an intermediate representation
of the data (i.e., an XML DTD), the business
logic programmer can use arbitrarily com-
plex logic to create the data without affecting
how the visual designer decides to present
that data to the user. The flexibility of XML to
describe complex hierarchical data simply
makes it an ideal choice. Even if the business
logic and presentation are created by the
same person, taking the critical step of sepa-
rating logic from presentation makes for a
much more maintainable application. This is
particularly difficult to do in page-centric
Web application environments.

A second – and more compelling – reason to
expose XML functionality in Tango 2000 is to
empower developers to capitalize on the
emerging use of XML as a form of “Web EDI.”
Because of its plain-text, self-describing nature,
XML is rapidly becoming the de facto standard
for transferring data between remote and het-
erogeneous systems. From Microsoft’s BizTalk
initiative to ERP vendors such as SAP’s Busi-
ness-to-Business Procurement solution, XML is
playing a central role in linking systems togeth-
er. Tango 2000’s focus on open and unlimited
XML structures provides an opportunity for
developers to create “integration solutions” –
solutions that combine heterogeneous busi-
ness systems with ease and flexibility.

Consider Tango’s role in a hypothetical
portfolio tracking application. A user could
view his or her portfolio via a Web browser
connected to a central Tango application. To
make a trade, the user would simply place the
order through the Tango application, which
would then forward the trade details to a
secure server at the brokerage via XML and
HTTP. Upon confirmation of the trade (which
the Tango application could automatically
poll using another XML request), the client’s
portfolio would be updated. Skeptical? Well, if
you do online banking, this is happening
already. The next time you connect to your
bank using Quicken and download your
transactions, save them to a file and have a
look. That’s XML at work.

Through an intuitive interface, Tango 2000
simplifies the reading, manipulation and
streaming of XML data. Moreover, unlike
some competing application servers that
impose a fixed DTD on your XML, Tango
allows the developer to choose precisely what
data is sent over the wire. This means that
existing back-end servers that already speak
XML don’t need to be rewritten to allow a
Tango application to access them. That flexi-
bility, coupled with Tango 2000’s program-
ming model, makes it a good choice for creat-
ing XML-centric Web applications easily.

AUTHOR BIO
Tom Otvos is director of research for Pervasive Software.

Tango 2000’s visual programming environ-
ment makes building XML applications easy.

Subscribe Today
and receive the

“CFDJ Digital Edition”
FREE

Subscribe Today
and receive the

“PSDJ Digital Edition”
FREE

at www.TANGOJOURNAL.com

1800-513-7111
or subscribe online for faster service
subscribe@sys-con.comG

E
T

Y
O

U
R

 O
W

N
!

tom.otvos@pervasive.com

Subscribe Today
and receive the

“CFDJ Digital Edition”
FREE

Subscribe Today
and receive the

“CFDJ Digital Edition”
FREE
at www.COLDFUSIONJOURNAL.com

1800-513-7111
or subscribe online for faster service
subscribe@sys-con.comG

E
T

Y
O

U
R

 O
W

N
!

11SEPTEMBER 1999

Enterprise
Soft

www.enterprisesoft.com

OrderNumber tags can be added to the document to represent various
orders from the same buyer. BuyerAddress is made up of four elements:
StreetName, City, State and Zip Code. OrderNumber is made up of four
elements and one attribute. The four elements are called ProductID, Pro-
ductName, DeliveryDate and RequestedPrice, and the attribute name is
Quantity. Although the Quantity attribute could have been expressed as
an element, for our particular example it’s more advantageous to define
it as an attribute because it can be directly manipulated by the SAX API
inside the callbacks attribute list of the OrderNumber tag. Figure 1 illus-
trates the document hierarchy. The XML document format is shown in
Listing 1.

Some partners may take the orders, process them and notify senders
of the status of their order. These partners parse the information
contained in the document in a batch manner and create objects
that are used by their
purchase order systems.
Based on the information
contained in the docu-
ment, the purchase order
system might create
three objects: a purchase
request object, a buyer
object and an order ob-
ject. The purchase re-
quest object contains the
buyer object and a list of
order objects. The DOM
interface is the correct
mechanism to facilitate
the creation of these
objects from the XML
document. Listing 2
shows the use of the DOM
Java API to retrieve the
document information
needed to create the
buyer object.

Some partners may
want to evaluate re-
quests whose item quan-
tity is greater than or
equal to 500. To facilitate
processing, the applica-
tion programmer may
wish to evaluate the
“Quantity attribute in
the ‘OrderNumber’” tag
independent of any
other information in the
document tree. In this
case we use the SAX
interface, which, among
other things, allows us to
register a document
handler as a callback
object that’s triggered when a document tag is found. When the tag
being processed is equal to “OrderNumber,” the quantity attribute will
be evaluated against the quantity rule. In this scenario it’s irrelevant
that the “OrderNumber” tag is contained inside the “Pur-
chaseRequest” tag. Listing 3 shows the use of the SAX Java API to cap-
ture the “OrderNumber” tag from the document information and
evaluate its Quantity attribute.

In this particular example orders fewer than 500 items will not be
processed by the system. Those orders greater than or equal to 500 will
be processed using the DOM API. However, in this case the SAX API will
allow the application writer to filter the information and not overload
the system with unprofitable requests.

The definition of a standard representation of the purchase order doc-
ument enables the various partners to manipulate the information as
they see fit, independent of each other. This flexibility can be extended
by allowing sophisticated partners to add additional tags into the docu-
ment hierarchy. As long as the main tag dependencies are kept, the
sophisticated partners will be capable of leveraging the additional infor-
mation on their transactions. Additional tag examples can be a “Deliv-
eryDateOffset” tag that allows a partner to identify a range of days from
the “DeliveryDate” tag by which the order can be supplied. If the infor-
mation is present in the purchase request, the partner can leverage it. If
it’s not present, it can be ignored by the partner system.

The URL class-loading capabilities of the Java 2 platform supplement
the XML data model by allowing a document to contain behavior in addi-
tion to data. This is accomplished by embedding URL links to Java class-

es inside a document.
Class loading coupled
with reflection form a
powerful mechanism that
allows Java programs to
dynamically download
functionality from a part-
ner Web site in order to
process new XML tags.
However, this particular
mechanism requires an
adapter-based framework
similar to the Beans
model that allows appli-
cation developers to
dynamically define inter-
actions between their
legacy systems and the
newly downloaded func-
tionality. (This mecha-
nism will be covered in a
separate article.)

Conclusion
In this article we dis-

cussed the advantages of
marrying the XML and
Java technologies. XML is
to Java as cream is to cof-
fee; it makes the coffee
drinkable. While Java by
itself provides a great deal
of dynamic behavior
through its dynamic class
loading and reflection
mechanisms, by itself it’s
not the best way to deal
with data format issues.
XML takes Java to the
next level by providing a
flexible and extensible tag

definition environment that is machine independent. Java applications
coupled with XML data formatting are more capable of adapting to data
format changes in a generic, nonprogrammatic way. This increases time
to market and gives developers the ability to react more quickly to mar-
ket changes.

AUTHOR BIO
Israel Hilerio, a member of the technical staff at i2 Technologies, Dallas, is a Sun Certified Java programmer
with 10 years of programming experience, including three and a half in Java. He has Ph.D. and MS degrees
in computer science and a BS in computer engineering.

12 SEPTEMBER 1999

israel_hilerio@i2.com

FIGURE 1: Purchase Request XML Hierarchy Definition

DOCUMENT
<?xml version=”1.0”?>

ELEMENT
<PurchaseRequest>

ELEMENT
<BuyerAddress>

ELEMENT
<BuyerName>

TEXT

TEXT

TEXT
<StreetName>

TEXT

ELEMENT
<City>

TEXT

ELEMENT
<State>

TEXT

ELEMENT
<ZipCode>

TEXT

ELEMENT
<RequestedPrice>

TEXT

ELEMENT
<DeliveryDate>

TEXT

ELEMENT
<ProductName>

TEXT

ELEMENT
<ProductID>

ATTRIBUTE
Quantity

ELEMENT
<OrderNumber>

13SEPTEMBER 1999

VSI
www.vsi.com

14 SEPTEMBER 1999

<?xml version="1.0"?>
<PurchaseRequest>

<BuyerName>TonyElectronics</BuyerName>
<BuyerAddress>

<StreetName>909 E. Las Marias</StreetName>
<City>Dallas</City>
<State>Texas</State>
<ZipCode>75090</ZipCode>

</BuyerAddress>
<OrderNumber Quantity="500">

<ProductID>PC102</ProductID>
<ProductName>Siega 400MHz Pentium PC</ProductName>
<DeliveryDate>November 19, 1999</DeliveryDate>
<RequestedPrice>$1200</RequestedPrice>

</OrderNumber>
</PurchaseRequest>

Document doc;
TXElement root;
Buyer B;
Parser p = new Parser("XMLParser");
try {

FileInputStream file = new FileInputStream(documentName);
doc = p.readStream(file);
root = (TXElement) doc.getDocumentElement();
TXElement name = (TXElement) root.getElementNamed("Buyer
Name");
TXElement address = (TXElement)root.getElementNamed("Buy
erAddress");
TXElement street = (TXElement)address.getElement
Named("StreetName");
TXElement city = (TXElement)address.getElement-
Named("City");
TXElement state = (TXElement)address.getElement-

Named("State");
TXElement zip = (TXElement) address.getElementNamed("Zip
Code");
B = new Buyer(name, street, city, state, zip);

}
catch (java.io.IOException e) {

e.printStackTrace();
}

try{
Parser parser = ParserFactory.makeParser(parserClass);
saxTest handler = new saxTest();
parser.setDocumentHandler(handler);
parser.setErrorHandler(handler);
parser.parse(args[0]);
System.exit(0);

}
catch (Exception e) {

e.printStackTrace();
}

public void startElement(String name, AttributeList atts) {
if (name.equals("OrderNumber"))
{

int qty = Integer.parseInt(atts.getValue("Quantity"));
if (qty >= 500)
{

processOrder(filename);
}

}
}

Listing 3

Listing 2

Listing 1

SlangSoft
www.slangsoft.com

The code listing for all articles can also be located at
www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

15SEPTEMBER 1999

Sybase
www.sybase.com

Last month I was all excited with the
afterglow of JavaOne. If I droned on a bit
too much about that, don’t worry. This
month will be JavaOne free. Doh! I’ve
just gone and mentioned it there.
Sorry.…Sorry.

So what has been happening this
month? Well, we’ve been having lots of
fun with Java and Microsoft, and have
also seen the launch of the UK’s first Java
Servlet hosting ISP. But before all that,
let me tell you about my new wee toy.

Yes, I am very excited. For years I’ve
been fighting the urge to get a portable
computer. As you know, I do quite a bit
of traveling. This very article has been
penned on a variety of people’s comput-
ers. I even had to resort to the old pen
and paper on one dark occasion. I’m a
bit like the magpie in that respect. Not
having a nest of my own, I tend to flock
to others for such “nest” requirements.
The resistance has been for any of a
number of reasons. One, I was never a
fan of the size of them. When you’re
walking about, it’s always obvious that
you’re a “carrier,” and this never really
appealed. Considering the career path
I’ve chosen, I’m not a big fan of the tech-
nology gadgets in which we insist on
entrusting more and more of the
responsibilities of our daily lives.
Besides, if I had a portable, others might
be under the illusion that I actually do
coding on the move. I don’t think so! I
don’t even wear a wristwatch. Never
found the need for one.

Of course, I have gone through all the
fads of personal organizers – my desk
drawer is a testament to that. Therein
lies a graveyard of old Psions and Apple
Newtons, and there’s even an old Casio
address book knocking about. But I get
bored with them. Sure, it’s a great novel-
ty to carry these things around, and let’s
be honest, there’s a certain street-cred to
be had when displaying your wares in

the high street or office. When I had my
Newton, it was a great way to talk to peo-
ple as they would come up in bars and
restaurants and go ooh and ah.

But more recently, as my company
grows and expands, I find myself doing
more and more documentation, and
keeping on top of e-mail has become
paramount. So the need for a portable
PC raised its ugly head again. I had a
look around at the current offerings, and
not a single unit caught my eye. I was
still bored! But then I remembered a
machine I spotted in Tokyo last year and
thought, How cool is that? It was the
Sony Vaio PictureBook, the one that’s
half the size of normal portables and has
a camera built into the top of the screen.
It only recently became available on the
market, and when it did, I was bowled
over by the price of it: so cheap. So I
ordered one, and a couple of days later it
was delivered. I love it. It’s a full PC with
Windows 98 and has my entire develop-
ment environment on it with all my doc-
umentation tools. But it’s small, with a
keyboard just the right size. Any smaller,
it would be awkward to type documents
of any real size. It’s no bigger than the
Apple Newton, so I can carry it about
with my other crap without the need for
a separate “Targus” bag.

Excelled . . .
My developer’s background is with the

early Windows API. For reasons best
known to me at the time, I wanted to be a
Windows programmer. I wanted to create
great programs that would blow people
away. But I was constantly frustrated
about why official Microsoft products
always ran better than mine and seemed
to have access to features I couldn’t find
any documentation for. Then I discov-
ered the ancient art of the undiscovered
APIs. An experienced developer who
mentored me took me through some of
these real beauties that aided and abet-
ted my cause. Well, this was a practice I
assumed was being downplayed as I
moved through the Java community.
After all, we’ve heard many of the big soft-
ware vendors complain about Microsoft’s
undocumented APIs, and how this
unfairly creates an uneven playing field.
But being solely in the Java universe, this
is an argument I’ve been able to follow as
closely as anyone would want.

But my company has been involved
with a project that called for some of this
knowledge. One of our requirements
was the ability to read an Excel spread-
sheet file and be able to manipulate it. I
had performed something similar many
years ago under Windows and C, and
recall having lots of wonderful fun when
trying to write an Excel version 4.0 file.

So it was with a certain amount of
trepidation that we ventured into the
world of writing a class that could read
Excel 97 files. As the first port of call,
we researched the Microsoft site,
looking for information on the struc-
ture of these enigmas. At first call it
seemed rather easy. All the information
seemed to point toward a rather simple
HEAD/DATA record format. You simply
read the header information, which
then paves the way for the layout of the
data section.

A sad story of failure and frustration

16 SEPTEMBER 1999

WRITTEN BY
ALAN WILLIAMSON

Excelled Developers

E
very time I come around to writing this, I have this fear:
What the hell am I going to write about? Then I sit back and
have a think of what has happened in the last month and
what is likely to happen in the forthcoming month and
something usually presents itself. Fortunately, Mother
Nature has something quite exciting up her sleeve for me to
touch on this month, so I thank her for that. This is the
month of the eclipse of the sun – no, nothing to do with
McNealy and associates.This is the SUN.

S T R A I G H T T A L K I N G

17SEPTEMBER 1999

BlueSky
www.blue-sky.com

18 SEPTEMBER 1999

Simple. Creating a Java class that
could perform this didn’t seem too
problematic. After creating a core struc-
ture that would iterate through all the
records in a file, we felt confident we
would have this one done ’n’ dusted
within a couple of days. Well, you know
the feeling you get when you’re coding,
that what you’re working on is a work of
art. It will run first time and the opti-
mism you feel allows you the luxury of a
false sense of security.

We compiled and then ran. Failed!
Not a single record was read. Ho hum,
guess we must have missed something
silly. Looked through the code; nothing
major was highlighted. Must be some-
thing we missed, but nothing obvious
was coming forward. Feeling a little dis-
couraged, we resorted to opening up the
original Excel file with a hex editor to see
if we could read it manually.

Nothing looked familiar. But after, say,
the first 512 bytes, the format looked
characteristic of what we were looking
for. So we modified our class to skip for-
ward the necessary bytes and lo and
behold! The code started to churn out
Excel records. But then it failed as it
approached the end of the file. How
frustrating.

Nothing in the Microsoft documenta-
tion pointed to or even hinted at this
strange behavior. We looked through the
postings in the newsgroup via what has
to be the best research tool in the world:
www.deja.com. We found many others
that shared our problem, and even one
guy who said, “Oh, you don’t want to be
doing that.” Very helpful, thank you.

The problem seems to stem from
when we encounter a worksheet bound-
ary. From there on in the file becomes
unreadable. We’re still unable to read
multiple worksheets, and at the present
moment we have a class that reads a sin-
gle worksheet. If anyone has successfully
unlocked the secrets of the Empire’s Excel
spreadsheet, please don’t hesitate to e-
mail me. Would love to hear from you.

We of course tried to e-mail Microsoft
with our query, and what a well-invested
effort that turned out to be! Having e-
mailed a number of Microsoft channels,
it’s now the third week and we’ve still
heard nothing. If anyone from Microsoft
reads this column, please get in contact
with me, as I would love to discover
how developers are to get through to
Microsoft. The likes of Sun and Oracle
have opened their doors to developers,
and I am wondering whether it’s a case
of not knowing where this mythical door
is located, or does the door, like the
mythical Scottish town Brigadoon,
appear only every 100 years. Answers in
an e-mail, please.

Mailing List
I’m sure we’re not the only ones to

have hit this sort of closed-door syn-
drome. How many of you have had to
wrestle with other Microsoft formats? I’d
love to hear from you. Come and chat on
our mailing list and share your views with
the rest of us. To join, send an e-mail to
listserv@listserv.n-ary.com with sub-
scribe straight_talking-l in the body of
the e-mail. From there you’ll get instruc-
tions on how to participate on the list.

Reader Profile
A wee while ago I briefly touched on

the makeup of you all and recounted the
weird and wonderful places in which
you’ve been reading this fine piece of lit-
erature. Well, many of you have e-mailed
me with some strange places, and I think
the current leader in this rather unique
field has to go to Giuseppe Persiani, an
Italian Java developer. Giuseppe e-
mailed me about a number of issues I
raised and then tagged on the bottom
where he was when he first read this col-
umn. It was just before he saw his daugh-
ter for the first time on an ultrasound in a
clinic. Whoa. I assume, of course, that he
took JDJ in with him. I can’t imagine JDJ
forming that pile of communal maga-
zines we all nervously thumb through
while we patiently wait our turn. If I’m
wrong and it was, what a cool clinic! – it
gets my vote.

Speaking of that, we live in a farming
community and the types of magazines
we have are Farmers Weekly and Scottish
Farmer. What sorts of magazines are avail-
able in the deepest Silicon Valley clinics?
Would love to know if any techy journals
are among this pile. Let me know, please.

Salute of the Month
In this article I’d like to take my hat off

to someone who over the last month has
gone above and beyond the call of duty.
This month I am going to stay at home
and salute two of my developers. I had
disappeared way up to Glasgow for the
weekend, and came home late Sunday
afternoon to discover the office open. I
thought, hmmm, how strange. I wonder
who’s in today? I then proceeded to
enter the premises and discovered Keith
and Murray working away, developing
Java. It was a hot Sunday afternoon, and
we had a project that looked as though it
was going to overrun. These guys had
the forethought to try to get a lot of the
work done earlier as opposed to leaving
it to later. To celebrate this act of fore-
sight, we then proceeded down to our
local for an evening’s drink or two, and it
turned out to be a very good night. So
Keith and Murray, I thank you.

Book Review
This month I finished the story

behind Netscape from Jim Clark. It was
actually a very short book when all is
said and done, and most of it was filled
with the observations of Jim Clark com-
paring Netscape to the way his old start-
up, SGI, ran. It was a very interesting
read, and it really opened my eyes to the
history of Netscape. My only criticism is
that it didn’t go into enough detail. This
was another book about a company that
suffered from having no sales, then you
turn a page and they’re suddenly having
millions of dollars worth of sales. Most
frustrating. Again no explanation of how
they grew that side of the business, and
no information on how bagging that
first revenue check really felt. Are these
people becoming complacent and for-
getting the simple joys of starting a busi-
ness? I know that from my point of view
I’m more interested in the early days
than how they are battling the likes of
Microsoft. Would love to know how
these chaps operate around the birth of
a company. That said, excellent book,
and highly recommended.

• • •
Spending time with some of you Ameri-
cans is beginning to scare me – and more
important, affect me. I’ve found myself
saying “I guess” an awful lot more. I can’t
seem to catch it in time, and once it’s out
in the open you have to run with it. But
inside I’m kicking myself, and mentally
noting not to say it again. So before I’m
tempted to utter it again, I shall bid you
farewell, and look forward to speaking to
you next month.

Have a nice day y’all! Nooooooo!

AUTHOR BIO
Alan Williamson is CEO

of n-ary (consulting) Ltd,
the first pure Java

company in the United
Kingdom. A Java

consultancy company
(www.n-ary.com) with

offices in Scotland,
England and Australia,

they specialize solely in
Java at the server side.

Alan is the author of two
Java Servlet books

and contributed to the
Servlet API. alan@sys-con.com

S T R A I G H T T A L K I N G

If anyone from
Microsoft reads

this column,
please get in

contact with me,
as I would love to

discover how
developers get

through to
Microsoft

‘‘

’’

19SEPTEMBER 1999

KL Group
www.klgroup.com

20 September 1999

A year ago developers were just learning that XML stands for eXtensi-
ble Markup Language. Six months ago CIOs started taking an interest in
XML and smart developers started buying “Introduction to XML” books.
Now “XML for Managers” books are becoming popular and it seems like
everyone is trying to figure out what they can do with XML and what
infrastructure they’ll need to support it.

Why XML?
There are many reasons to use XML as an enabling data format and

many potential applications have been suggested, from improved Inter-
net searching to defining configuration files. However, the two uses of
XML that appeal most to both CIOs and developers are the exchange of
business data between applications and customized presentation of
data.
• Exchanging business data between applications: Application devel-

opers need to tie enterprise systems from different vendors together
within an organization to enable, for example, order-processing appli-
cations to pass information to inventory management and for both
systems to access the customer database. Using XML, a loose integra-
tion is possible at a fraction of the effort of traditional EDI. With XML,
businesses don’t need to replace or rebuild their applications; rather
they will simply begin to XML-enable the data and systems they
already have.

• Customized presentation of data: Different browsers and devices, such
as PDAs (personal digital assistants), cell phones or pagers, have unique
display formats. Using an XSL processor, on either the client or server,
XML data can be transformed into the appropriate format for display on
any client, completely insulating the business application from the con-

straints of the output device. This separation of form from content is key
to building any flexible and extensible information system.

How Do Databases Fit In?
For a short while in the rapid evolution of XML there was a notion that

specialized XML servers and object databases would be the natural stor-
age point for XML documents and data. But then a question arose: “So
where does all this XML data come from?” The answer, of course, is:
“From the relational databases that underpin the majority of business
applications in use today.” For most XML applications, the creation and
ongoing maintenance of a separate “XML repository” is an unnecessary
development expense. Instead, all most companies need to do is take
information from existing databases and render it as XML so it may be
shared and consumed more easily. Of course, if the relational database
in question has object capabilities, such as Oracle8i, then the task of ren-
dering and updating data as XML is greatly simplified.

If the key requirement is to be able to efficiently read and write XML to
and from the database, developers should look hard at Oracle8i. Designed
from the ground up to be the database for the Internet, it includes native
support for Internet standards such as Java and XML. In fact, at the heart
of the Oracle8i database is a highly scalable Java engine tuned for server-
side Java application development, giving Java the ability to scale to thou-
sands of heavy-duty concurrent connections. In addition, Oracle’s XML
capabilities are so much a part of the database that Oracle8i can run its
XML components for Java completely within the database to deliver the
scalability required by today’s Internet applications.

Let’s look at the tools and techniques used to read and write XML in
Oracle8i.

There’s a new player in town
Is everyone

jumping on the bandwagon?

There’s a new player in town
Is everyone

jumping on the bandwagon?

J D J F E A T U R E

WRITTEN BY MARTIN BOYD

Reading XML from the Database
The ability to model or materialize a database object, such as an

insurance claim form, in XML requires infrastructure components that
can use SQL to request the object and transform it into an XML-format-
ted document or datagram. In the example in Figure 1, a claim form is
defined as an object in the database using the relational tables shown.

This object can be materialized in XML as follows:

<?xml version=”1.0”?>
<CLAIM>
<CLAIMID>123456</CLAIMID>
<FILED>1999-01-01 12:00:00.0</FILED>
<CLAIMPOLICY>
<POLICYID>8895</POLICYID>
<PRIMARYINSURED>
<CUSTOMERID>1044</CUSTOMERID>
<FIRSTNAME>John</FIRSTNAME>
<LASTNAME>Doe</LASTNAME>
<HOMEADDRESS>
<STREET>123 Cherry Lane</STREET>
<CITY>San Francisco</CITY>
<STATE>CA</STATE>
<ZIP>94100</ZIP>

</HOMEADDRESS>
</PRIMARYINSURED>

</CLAIMPOLICY>
<DAMAGEREPORT>
The driver lost control of the vehicle.
This was due to <CAUSE>faulty brakes</CAUSE>.

</DAMAGEREPORT>
<SETTLEMENTS>
<PAYMENT id=”0”>
<PAYDATE>1999-03-01 09:00:00.0</PAYDATE>
<AMOUNT>7600</AMOUNT>
<APPROVER>JCOX</APPROVER>

</PAYMENT>
</SETTLEMENTS>
</CLAIM>

This XML document preserves the data relationships set up by the
database schema for the insurance claim object. The following illustra-
tion was built using the Oracle XML Utilities and shows how a simple
Java servlet (the XSQL Servlet, available for download on the Oracle
Technology Network) can create this output.

The XSQL Java servlet can be loaded into a database that supports
Java, such as Oracle8i shown in Figure 2 or a middle-tier server such as
Oracle Application Server or other Web servers that support servlets.
Let’s take a look at the XSQL Servlet structure in detail.

Oracle XSQL Servlet for Java
The XSQL Servlet is a Java program that leverages the capabilities of

Oracle8i to assist in producing dynamic XML documents from one or
more SQL queries of data objects. It does this by processing a .xsql file,
which is simply an XML file with a specific structure. The following is an
example of a .xsql file that searches for insurance claims submitted by
Mr. Doe. Note that the query may be written as regular SQL or, as in this
case, using object dot notation.

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”claim.xsl”?>
<query connection=”xmldemo”>

select value(c) as Claim from insurance_claim_view c
where c.claimpolicy.primaryinsured.lastname = 'Doe'

</query>

The servlet uses Oracle’s XML Parser to process this file and pass any XSL
processing statements to its internal XSLT Processor (which performs

transformations according to an XML stylesheet) while passing the para-
meters and SQL statements between the <query> tags to the XML SQL Util-
ities. Results from those queries are then received as either XML-formatted
text or a JDBC ResultSet object. If necessary, the query results may be fur-
ther transformed into any desired format using the built-in XSLT processor.

The XML Parser is used by the XSQL Servlet to parse the .xsql files as
well as to receive and render as necessary the output from the XML SQL
Utilities. As with the servlet, the Parser can be loaded into the Java VM
(virtual machine) in Oracle8i, run from a middle-tier server such as Ora-
cle Application Server, or run on the client as a JavaBean. Through its
DOM and SAX support, it can accept the ResultSet from the XML SQL
classes and provide an XML object tree or text stream to the servlet for
output.

XML Transformations
The XML Parser’s XSLT support isn’t limited to transforming one XML

document into another. These XML documents can also be used as data
messages between heterogeneous databases, with XSLT providing the
translation from one message format to the other. While this capability
is useful for electronic data interchange, it can also be used to render
documents in HTML and other text-based formats. Creating a stylesheet
that is simply an HTML page with the appropriate XSL processor state-
ments at the locations where the XML data is to be displayed can
dynamically create very effective HTML pages.

For example, using the insurance claim XML document, we can create
an HTML page to render selected data elements, initially using dummy
data as page-formatting placeholders. Once the HTML is satisfactorily
formatted, the static data may be replaced with XSL processor state-
ments, as below:

Writing XML into the Database
Its self-describing object capability makes XML a compelling technol-

ogy for e-business and other data interchange applications. Using appli-
cation generation utilities such as Oracle’s XML Class Generator for Java,
Web-based applications can create XML documents or datagrams to be
stored in databases.

There are two ways to store XML-tagged data – as a single object in a
CLOB or BLOB with its tags intact or distributed across a set of tables.
Distributing across tables maps XML data into the relational schema.
Oracle8i can accept an XML document as a single object and, through its
interMedia text option, can actually search for and return data based on
its XML tags. Using our insurance example, the following SQL statement
searches for all settlements approved by JCOX and uses the CONTAINS
SQL function to find those where “faulty brakes” were the cause.

SELECT SUM(Amount)
FROM Claim_Header ch, Claim_Settlements cs,

Claim_Settlement_Payments csp
WHERE csp.Approver = 'JCOX'
AND CONTAINS(DamageReport,'faulty brakes WITHIN cause')>0;

While this is quite useful for unstructured data such as the accident
description on our claim form, structured data is better served by stor-
ing it in tables without tags where it can be easily updated and queried.
Oracle’s XML Parser with its XSLT transformation component can parse
an XML document submitted to the database and, based on an XSL
stylesheet, create the appropriate SQL INSERT and UPDATE statements
to store the XML-tagged data in the database.

Referring back to our insurance claim document, the following stylesheet
fragment could create the Payment table entry after XSLT processing:

21September 1999

Data XSL Statement
JCOX <xsl:value-of select=”claim/settlements/payment/approver”/>
7600 <xsl:value-of select=”claim/settlements/payment/@amount”/>
123456 <xsl:value-of select=”claim/@claimid”/>

22 SEPTEMBER 1999

insert into PAYMENT values
(‘<xsl:value-of select=”claim/settlements/payment/approver”/>’,
<xsl:value-of select=””claim/settlements/payment/@amount”>,
<xsl:value-of select=”claim/settlements/payment/@paydate”/>);

Alternatively, the OracleXMLSave class within the XML SQL Utilities is
able to put back the XML document into any database table or view. It
maps the tag names to the column names and handles structured types,
collections and references appropriately.

Essential XML Building Blocks
Applications such as the XSQL Servlet described above make use of

lower-level XML components including the Oracle XML Parser, Class Gen-
erator and Utilities. The Java versions of these components can be loaded
into the Oracle8i server, run from a Java VM on a middle tier such as Ora-
cle Application Server or on the client. They are available along with work-
ing code samples through the Oracle Technology Network to all registered
members. Registration is free (http://technet.oracle.com/tech/xml).

• Oracle XML Parser: Available in Java, C, C++ and PL/SQL. These parsers
are available on Windows, Linux, all flavors of UNIX, and all the other
platforms on which Oracle runs. The XML Parser for Java is fully compli-
ant with the DOM Level 1 specification supporting validating and nonva-
lidating modes with an integrated SAX interface and support for Name-
spaces. Performance has been optimized through various strategies, such
as caching DTDs and incorporating internally the XSLT processor for
transforming XML documents based on CSS and XSL stylesheets.

• Oracle XML SQL Utilities for Java: These utilities take a SQL or SQLJ
query and return the results in XML as text or DOM trees. SQL queries
from the XQSL Servlet, Java stored procedures or even the command
line can be sent to the database and will generate the results format-
ted as XML based on the internal structure of the schema.

• Oracle XML Class Generator for Java: The XML Class Generator for Java is
a utility that creates Java classes from DTDs to enable the programmatic
construction of XML documents. The Class Generator works in conjunc-
tion with the Oracle XML Parser, and boasts complete character set sup-
port and optional validation mode for ease of debugging. Documents cre-
ated by these classes are fully compliant with the XML 1.0 W3C standard.

Standards Support
There’s a lot of confusion and hype in the market. With all the current

interest in XML, many vendors claim to be developing the “next XML
standard” for any number of different applications or business types.
Whether focused on the XML language itself or its DTD data standards,
these efforts do little to promote clarity and only spread F.U.D. – fear,
uncertainty and doubt – among decision makers. Regardless of the
shakeout from the definition game, Oracle is committed to supporting
open, vendor-neutral standards for XML. As an active representative on
many W3C working groups and a founding member of XML.org, a ven-
dor-neutral organization working to define the data standards, Oracle is
working hand in hand with vendors and customers to ensure that, what-
ever that standard, customers will have the best technology platform to
seamlessly integrate and run their applications.

AUTHOR BIO
Martin Boyd is a principal product marketing manager in Oracle’s Worldwide Marketing organization,
where he is responsible for XML and content management technologies.

FIGURE 1: Claim form defined as object in database using relational
tables above

CLAIM
ClaimID

Filed
DamageReport

Settlements

POLICY
PolicyID

PrimaryInsured
CUSTOMER

Customer ID
FirstName
LastName

HomeAddress

ADDRESS
Street
City

State
Zip

PAYMENT
Approver
Amount
PayDate

0..*

FIGURE 2: The XSQL Java servlet loaded into Oracle8i database

ORACLE8i DATABASE

XSQL Servlet

XML Parser

XSLT Processor

XML SQL UtilitiesData Schema

CLAIM
ClaimID

Filed
DamageReport

Settlements

POLICY
PolicyID

PrimaryInsured
CUSTOMER

Customer ID
FirstName
LastName

HomeAddress

ADDRESS
Street
City

State
Zip

PAYMENT
Approver
Amount
PayDate

0..*

mboyd@us.oracle.com<?xml version="1.0"?>
<query connection="demo">

<![CDATA[
select value(c) as Claim

from insurace_claim_view c
where c.claimpolicy.priamryinsured.lastname='Astoria'

]]>
</query>

<?xml version="1.0"?>
- <RESULTSET>
- <ROW id="1">
- <CLAIM>

<CLAIMID>77804</CLAIMID>
<FILED>1999-01-01 00:00:00.0</FILED>

- <CLAIMPOLICY>
<POLICYID>8895</POLICYID>

- <PRIMARYINSURED>
<CUSTOMERID>1044</CUSTOMERID>
<FIRSTNAME>Paul</FIRSTNAME>
<LASTNAME>Astoria</LASTNAME>

- <HOMEADDRESS>
<STREET>123 Cherry Lane</STREET>
<CITY>SF</CITY>
<STATE>CA</STATE>
<ZIP>94132</ZIP>

</HOMEADDRESS>
</PRIMARYINSURED>

</CLAIMPOLICY>
- <SETTLEMENTS>
- <SETTLEMENTS_ITEM itemNo="1">

<PAYDATE>1999-01-05 00:00:00.0</PAYDATE>
<AMOUNT>7600</AMOUNT>
<APPROVER>JCOX</APPROVER>

23SEPTEMBER 1999

Cerebellum
www.cerebellumsoft.com

Is it the next killer app?

WRITTEN BY
AJIT SAGAR

The Mark(et) of XML

A
few months ago, at JavaOne, I discussed the possibility of
starting an XML publication with the folks at SYS-CON Pub-
lications.Two questions came up: “Is it as big as Java?” and
“Are there any real products out there?” Both are valid.

E - J A V A

24 SEPTEMBER 1999

The first question is the more difficult
to answer. XML is a standard. Java is a
platform. Is XML as big as Java? Or C++?
Or EDI? Or HTML? For one thing, XML
isn’t a programming language. It isn’t a
software platform. It isn’t a Web presen-
tation language. In some sense XML
may be seen as an Internet-enabled ver-
sion of EDI. However, at its most basic
definition, it is a markup language. One
of the primary purposes of a markup
language is to represent data via a tag-
based scheme. XML stands for eXtensi-
ble Markup Language. This means that
not only does XML allow data represen-
tation via tags, it enables the definition
of the tags themselves.

Thus XML may be seen as a means of
data definition and representation.
Since data is an integral part of all com-
puting environments (indeed, it is their
raison d’être), XML transcends pro-
gramming languages and computing

platforms. In that sense it is “bigger”
than Java. XML holds the promise of
being the cross-language, cross-plat-
form common data format. Its ultimate
goal would be to become as ubiquitous
as HTML in vertical industry segments.

The second question addresses the
promise of the “common data format”
as it stands today. The market for XML is
evolving rapidly. Some products have
already matured to industrial strength.
Others are in the process of maturing.
And many are still in their inception
stages. However, the XML products in
the market today run a wide gamut and
span several tiers of the computing
industry. This leads to confusion about
how to use XML and in what areas of
computing. Currently there is a wave of
euphoria about XML in the industry.
People are referring to it as the “silver
bullet” for e-commerce. While this may
be an overoptimistic definition, it’s true

that almost anyone who’s doing any-
thing in the world of e-commerce is tak-
ing a serious look at XML.

This month in e-Java we’ll take a look
at XML product categories, vendors that
are pushing XML as the enabler for e-
business transactions, and XML organi-
zations. As it’s beyond the scope of this
article to provide an exhaustive list of
products and vendors, what I’ll set forth
here are randomly selected examples of
vendors in the various product cate-
gories. I offer advance apologies to ven-
dors not represented here, and encour-
age them to contact SYS-CON for repre-
sentation in future publications.

Market Indicators
XML is yet another technology that’s

spreading like wildfire through the e-
business market. Granted, a lot of it is
hype. So what are the indicators for
determining the maturity of the market?
I’d like to present some of the unofficial
indicators that appear in the industry
when a technology starts staking its
claim in the computing world:
• Committees: Technology committees

both facilitate and hamper the evolu-
tion of a technology. Fortunately, the
pros of the former usually outweigh
the cons of the latter. Committees and
consortiums promote standardization
and reduce vendor bias. XML is a stan-
dard maintained by the W3C (World
Wide Web Consortium). In addition,
organizations like XML.org and OASIS
(Organization for the Advancement of
Structured Information Standards)
add weight behind XML.

• Training: Software training organiza-
tions are a reflection of the need for
particular software technologies in
the market. Most consulting and
training organizations involved in e-
business training offer XML training.

• Online tutorials: Free online tutorials
are an indicator similar to training.
Several online tutorials on the use of
XML are available on the Web.

FIGURE 1: XML presentation tools

DTD

EDITORS

XSL
Stylesheet

XML
Document

DTD Editor

XML Editor

XSL Editor

VIEWING TOOLS

XML Browser
with Parser

CONVERTER

XML to HTML
Translator

Web Browser

XML OBJECT

PARSERS
XML PARSER

HTML

25SEPTEMBER 1999

Interbase
www.interbase.com

• White papers: The good thing about
white papers is that, although they’re
definitely biased, they serve to
describe the general direction a par-
ticular technology is taking. When
several major industry players start
publishing white papers about a tech-
nology, that particular technology is
one to be reckoned with. Almost any
company that has a foot in the e-com-
merce door has a white paper that
defines their direction regarding XML.

• Books: Take a look at the number of
Java books that have flooded the mar-
ket. In only four years well over a
thousand books have been published
with more to come. The XML book
market is also growing rapidly. This
again reflects a market need.

• Conferences: Conferences serve to
bring IT managers, developers and
vendors together. In addition to rep-
resentation at several software and
business conferences (including
JavaOne), this year XMLOne, a SIGS
conference focused solely on XML,
took place in Austin, Texas, in May.
Conferences are also scheduled for
London and Santa Clara later in the
year.

xml.orgs, xml.coms and xml zones
One indication of how serious ven-

dors are in backing up a particular tech-
nology is the number of sites that subse-
quently start popping up. In the case of
XML, XML.org (www.xml.org) is an
industry Web portal operated by OASIS.
XML.org is an industry consortium
funded by a group of companies com-
mitted to establishing an open, distrib-
uted system for enabling the use of XML
in electronic commerce and other
industrial applications.

Several of the larger vendors have also
started dedicating separate Web sites
that focus solely on their affiliation to
XML and the respective products. Here
are some examples from the biggest
software companies in the world:

• www.BizTalk.org: site of Microsoft’s
XML-based commerce server

• www.ibm.com/developer/xml: IBM’s
XML Zone

• www.oracle.com/xml: Oracle’s XML
Web site

XML Product Categories
The proof is always in the pudding.

And actual products are the pudding in
this case. Mature and evolving prod-
ucts are the best indicators of how far a
technology has come. The XML prod-
ucts in the market today may be classi-
fied as:
• Authoring tools (editors)
• Viewing tools (browsers, XSL tools)
• Conversion tools
• Parsers/processors
• Tools/utilities
• Database systems
• Business-to-business servers
• Content management systems

Table 1 provides a brief description
of each product category. Figure 1 illus-
trates the product categories that fit
into the data presentation tiers. Figure
2 illustrates the product categories that
fit into the business tiers. The remain-
der of this article discusses these cate-
gories and some representative prod-
ucts.

Authoring Tools
XML authoring tools include XML

editors, DTD editors and XSL editors.
XML editors are standalone products for
creating and editing XML documents.
Many XML editors are sensitive to DTDs
and thus they can enable production of
valid XML documents. Xeena from
alphaWorks (IBM) and Adept Editor
from ArborText are examples of XML
editors.

XSL tools are used for creating, edit-
ing and processing XSL stylesheets.
Examples of XSL editors are CUEXsl
from CUESoft and XT from James
Clark.

Viewing Tools
The XML viewing tools are the

browsers that enable presentation of
XML documents. XML browsers, gener-
ally driven by stylesheets, provide capa-
bilities for viewing valid and well-
formed documents. Browser support for
XML varies among the different
browsers. It’s expected that Version 5.0
of Netscape Communicator as well as
Internet Explorer will have richer sup-
port for displaying XML. Examples of
XML browsers are Netscape’s Mozilla,
Internet Explorer 5.0, HyBrick from
Fujitsu and XML Viewer from alpha-
Works, IBM.

Conversion Tools
Applications using XML need to con-

vert data from various formats to XML
and back. This has given rise to a variety
of general and specific tools for this
conversion. Examples are XMLServlet
(Java Servlet to convert XML to HTML
on the fly) from Cerium Component
Software, EDI/XML Authoring Tool
from Redix International and Dynatag
(converts word processing documents
into DynaText electronic books) from
Inso.

Parsers/Processors
XML parsers process an XML docu-

ment and make it available to an appli-
cation as an interface that the applica-
tion understands. Standard interfaces
for this are SAX and DOM (described in
the next section). Thus the purpose of
an XML parser is to take the XML docu-
ment text input and convert it into
objects that can be used by the corre-
sponding programming language. XML
parsers can be validating (check confor-
mance of an XML document against a
DTD) or nonvalidating (check only well-
formatted XML documents). Examples
of XML parsers are IBM’s XML4C (for
C++) and XML4J (for Java), Oracle’s XML
Parser for Java and Microsoft’s XML
Parser.

Tools/Utilities
Several tools and utilities for XML that

provide additional processing and ser-
vices that enhance XML processors are
coming on the market. Since the tool
supplied by a particular vendor provides
unique functionality, it’s hard to pick
examples here. However, the examples
on my list are SAXON (a Java interface
for processing XML documents) from
Michael Kay, Java Project X package
from Sun Microsystems and xWingML
(builds XML documents that define the
complete Java Swing GUI) from Blue-
stone.

26 SEPTEMBER 1999

TABLE 1: XML product categories

PRODUCT CATEGORY DESCRIPTION

Authoring tools Editors for writing XML documents
Viewing tools Browsers for viewing XML documents
Conversion tools General and specific tools for converting to and/or from XML
Parsers/processors Process XML documents to make them available to applications as an interface that

the application understands
Tools/utilities Various utilities that add features that sit on top of XML parsers/processors for

different computing environments
Database systems Provide persistent stores for XML documents; includes RDBMS and OODBMS

products
Business-to-business servers Enable application-to-application information exchange using XML
Content management systems XML-based systems for document and content management

E - J A V A

27SEPTEMBER 1999

Tidestone
www.tidestone.com

28 September 1999

Database Systems
As mentioned earlier, XML basically defines

data formatting. Databases define data storage
and retrieval mechanisms. It’s therefore not
surprising that database vendors are jumping
on the XML bandwagon. This includes RDBMS
as well as OODBMS databases. The databases
provide persistent stores for XML documents.
Examples of database system products are
eXcelon from Object Design and Oracle8i from
Oracle.

Business-to-Business Servers
In my opinion, of all the product categories

described in this article, this category is the one
in which the heavyweight products will show
up. XML is all about data formatting, exchange
and translation between applications. The
XML server product category is one in which
businesses that have bet the farm on XML are
staking their claim. Business-to-business XML
integration servers connect applications to
existing Web sites and provide the ability to
leverage Web protocols in integrating business
applications directly over the Web to existing
legacy applications. The products in this cate-
gory include tools for transaction processing
and object serialization tools for application-
to-application information exchange using
XML. The types of applications integrated by
these application servers include e-commerce
applications, EDI, supply chain integration and
thin-client enabled devices, desktop applica-
tions, and so on. Bluestone’s XML-Server and
WebMethods’ B2B Server are examples of
products in this category.

XML Content Management Tools
XML content management environments

are used to build information exchange and
translation systems from rich information
repositories that combine the power of rela-
tional databases, query languages and search
engines. Examples of products in this category
are BladeRunner from InterLeaf and POET
Content Management Suite from POET soft-
ware.

Trading Places
As the editor of this “XML Focus” issue of JDJ, I

think that the market for XML is definitely getting
there. The technologies are evolving so rapidly
that it’s hard to separate the hype from reality. As
Sean Rhody, JDJ’s editor-in-chief, said in his edi-
torial “The XML Mambo” (JDJ Vol. 4, issue 6):
“Nice, but why is XML the next killer app?”

These are the kinds of questions SYS-CON
would like to start addressing. In fact, is XML
the next killer app? Or is it just an enabler for
the next wave of killer apps? Most of you who
are starting to get involved in XML are probably
trying to figure out where to start and what
XML is going to do for you.

We’d like to help you by directing our writ-
ers to address specific issues in the XML
industry. We encourage readers, writers and
vendors to provide feedback to us by filling
out the online XML survey form at JavaDevel-
opersJournal.com regarding the possibility of
an XML publication.

FIGURE 2: XML business-to-business tools

XML
Database

B-TO-B SERVERS

XML Application
Server

DATABASE SYSTEMS
XML Database

System

Web
Client

HTML

Legacy
System

PARSERS
XML PARSER

Web
Server

XML OBJECTS
XML OBJECTS

Ajit_Sagar@i2.com

Soft
Wired
www.java-

messaging

.com/ibus

E - J A V A

29September 1999

OASIS
www.oasis-open.org

30 SEPTEMBER 1999

T
his is the third in a series of articles focused on using Java and
ColdFusion technologies to develop an Online Ticket Store appli-
cation. In the July issue of JDJ we went through the ticket reserva-
tion system for our online store. We took a look at how the actual
protocol used for communicating with the airline back offices
could be abstracted at the Service Access tier.

This month JDJ is focusing on XML, which brings us to an aspect of
our store transactions that we haven’t paid much attention to – data for-
matting. Let’s pause to think about the type of data we’re transporting
across the different tiers of our architecture. Primarily, the end user sub-
mits his or her search criteria for an airline ticket and gets back a
response from the airline back office. During this transaction the data
goes through several tiers of a distributed application. Another part of
our online store is the module that offers goods for purchase or lease.
(This will be developed in the next article in this series.) The data trans-
ferred in the airline store’s purchase and lease transactions will undergo
a route similar to the data for the ticket reservations.

To make this application scalable to different storefronts, we’ll need a
standard data format to represent the transaction objects, such as an air-
line ticket query and the corresponding confirmation. Indeed, this kind
of format is one of the main reasons for XML’s existence.

I’ll begin with a definition of the data objects for the Online Ticket
Store, which will include objects that will be used in the next article for
selling and leasing goods offered in the store. Such objects include
clothes and souvenirs as well as portable CD players, laptops, CDs and
books that can be leased for the duration of the flight. In this article we’ll
encapsulate the string arguments we pass into the TicketBrokerServlet
and the StoreServlet (defined in next month’s article) into XML struc-
tures. The servlets will parse the XML structures into Java objects for pro-
cessing in the middle and back-office tiers.

This article focuses only on data formatting for data objects using
XML. As I’m assuming that readers are familiar with XML structures and
parsing, I won’t cover the basics here. Readers will need a basic familiar-
ity with Java servlets to follow the discussion, but those interested in the
application itself who don’t care much about XML can skip forward to
the next part in the series without missing anything. In the next article
we’ll discuss the online store part of the application, i.e., the merchan-
dise buying and leasing operations offered by the store.

Data Interchange Formats
Our application consists of the airline reservation system and the

online store. The data objects for the airline reservation system are:
• Ticket query
• Ticket quote
• Booking request
• Booking confirmation

Although the online store won’t be described until the next issue, I’m
going to define the objects for it now:
• Lease order
• Lease confirmation
• Purchase order
• Purchase confirmation

Note that in the above data objects there are three types of confirma-
tions. To keep things simple, let’s limit our data definitions to one con-
firmation structure with an attribute that indicates which operation is
being confirmed.

The end-to-end interaction in our distributed application starts from
the Client UI tier and ends in the Application Services tier. Figure 1

E - C O M M E R C E

AN ONLINE AIRLINE
T ICKET STORE PART 3

WRITTEN BY AJIT SAGAR
The first part of this series appeared in JDJ June
and the second part appeared in JDJ July

shows a breakdown of this data interaction. The data from the Client UI
tier to the Merchant Server tier is in HTML, since our front end to the
Merchant Server is a page served up by Allaire’s ColdFusion (please see
the corresponding issues of ColdFusion Developer’s Journal, Vol. 1,
issues 5 and 6). The end-user client UI can run in a browser; hence we
get a virtual Internet storefront. The data representation for the interac-
tion between the Service Access tier and the Application Services tier is
going to depend on the protocol. With RMI, serialized Java objects are
passed across the wire. With CORBA, CORBA structures constitute the
format for the data interchange. With raw sockets and Java servlets, data
is exchanged using serialized data streams.

This leaves the data interchange between the Merchant Server and the
Service Access tiers. If this application were migrated to the real world,
our online store would have to communicate with several airlines and
airport stores. In such cases defining the data objects, e.g., Purchase
Order, becomes a nightmare if each back office has its own definition of
the object. Luckily, standard data formats for most industry verticals are
emerging in the e-business market. The most prominent of these is XML,
which holds the promise of spanning all of e-business. Similarly, if our
Service Access tier were transported to another application and the data
formats were different, it would be a substantial task to update our data
structures to the new formats.

Data Objects for Reserving and Booking Tickets
The attributes of the ticket query and response from the airline back-

office tier were defined in JDJ’s July issue. The fields in the ticket query
are shown below. Example values are assigned to the fields:

DEPARTURE_CITY = “Smallville”
ARRIVAL_CITY = “Gotham”

BEGIN_DATE = “31/01/1999”
END_DATE = “01/01/2000”

NUMBER = “2”
CLASS = “First”

PREFERENCE = “Window”
SMOKING = “No”

The result of this query is returned as a ticket quote from the various
airline back offices to the Service Access tier, which creates a best quote
and returns it to the Merchant Server tier. This quote has the following
fields:

REFERENCE_NO = “SA2345678”
AIRLINE = “SeemaAir”

DEPARTURE_CITY = “Smallville”
DEPARTURE_DATE = “31/01/1999”
DEPARTURE_TIME = “10:00 P.M.”

ARRIVAL_CITY = “New York”
ARRIVAL_DATE = “01/01/2000”
ARRIVAL_TIME = “1:30 A.M.”

NO_OF_SEATS = “2”
CLASS = “First”

SEATING_PREFERENCE = “Window”
SMOKING = “No”

PRICE = “$1234.56”

The data structure for a booking request has the following fields:

NAME = “Clark Kent, Lois Lane”
REFERENCE_NO = “SA2345678”

AIRLINE = “SeemaAir”

A basic assumption here is that the reference number will be unique
for an airline and the back office can access the details of the flight based
on the confirmation number. Based on this input, the airline will send
back a confirmation object with just one field:

CONFIRMATION_NO = “SA2345678”

The hierarchy of the XML documents in DOM for the ticket reserva-
tion operations is shown in Figure 2. The XML file is shown in Listings
1–4. Listing 4 is the XML file for a confirmation. The <Confirmation> tag
has one attribute, “Type,” which indicates the type of confirmation. Our
broker can return confirmations of the type “Ticket,” “Lease” and “Pur-
chase.” I’m providing only an example of the ticket reservation confir-
mation. The confirmations for leasing and purchasing merchandise will
be similar.

Data Objects for Selling and Leasing Goods
Let’s go ahead and define the attributes of goods sold in the store. An

item that may be offered by the store will have the following fields
(example values are assigned to the fields):

ITEM_NAME = “CD Player”
ITEM_ID = “cd30056”

QUANTITY = “2”

An order for the purchase of an item (or items) will also need infor-
mation about the person making the purchase. This will consist of the
following fields:

NAME = “Clark Kent”
ADDRESS = “123 Tiny Lane,

Smallville, Kansas, 12345”

31SEPTEMBER 1999

32 SEPTEMBER 1999

The fields listed above are common for both purchase and lease
options. Some fields, however, are characteristic of the lease operation
because the lease is going to be linked to the flight the person takes (the
equipment is leased for the duration of the flight and hence must be
available at the airport). So the additional fields for the lease are:

AIRPORT = “Sunita International Airport”
AIRLINE = “SeemaAir”

FLIGHT_NO = “SA 123”
DEPARTURE_DATE = “12/01/2000”

The hierarchy of the XML documents in DOM for the buy/lease oper-
ations is shown in Figure 3. The XML file is shown in Listings 5 and 6.

Back to Basics: HTTP GET and HTTP POST
Now that we have our data object definitions, what should we do with

them? To actually use the XML data structures, we need to have modules in
the Merchant Server tier to send the data objects to the Service Access tier.
We also need modules in the Service Access tier to parse the XML data into
Java objects and then send them to the appropriate back-office tier for pro-
cessing. In the case of the Merchant Server tier, the data is actually submit-
ted via a ColdFusion template. The Service Access tier receives all requests
via a servlet. The data for ticket reservations is processed by the TicketBro-
kerServlet (as described in the July article). The data for the merchandise
purchase and leasing will be processed by the StoreServlet (described in the
next article). Here we’ll look at the code that parses the XML text.

So far, we’ve used the GET method to send data to the TicketBro-
kerServlet; the ticket request is sent as a parameterized query with the
URL string to the server. The POST method is more flexible, however,
because there are no limitations about parameter format and length.
When transmitting XML structures, the length of the query string can be
substantial. Some servers may limit the query string of the GET parame-
ters to 240 characters, and the method shouldn’t be used to send informa-
tion to the server. Its main purpose is to read information from the server.

Hence our Java servlets need to pick up POST requests sent by the
“client.” In a servlet this is done by the doPost() method. Let’s look at the
methods in the TicketBrokerServlet that can pick up the POST request
and parse the XML content into Java objects. For each XML data struc-
ture we’ll need a corresponding Java object (shown in Listing 7). All the
Java data objects are given in one listing to conserve space. Each data
object is represented as a simple Java class with one full-argument con-
structor and getter methods. Typically, each object will have its own list-
ing. As you can see, the complete code isn’t given in this article; most of
the objects are stubbed out. Instead, I’ve provided the complete code for
the TicketQuery and TicketQuote objects to illustrate the XML parsing
and document creation. Please refer to JDJ’s Web site at www.sys-
con.com/java for the complete code listing. The code for the TicketBro-
kerServlet that handles the TicketQuery and TicketQuote is shown in
Listing 8. The listing for the merchandise purchase and leasing (not
given here) will be available at the Web site.

IBM’s XML Parser for Java is used for parsing the XML document that’s
sent via the HTTP POST request. Let’s look at the doPost() method of the
TicketBrokerServlet in Listing 8. (The complete code for this servlet isn’t
discussed here and is omitted from the listings due to space constraints.
This code was discussed in the previous articles. Where the code is
stubbed out, I have inserted the comments “// etc.”)

TicketBrokerServlet
The request and response streams are copied into request_ and

response_ variables for future use. Next, the method parseParameters()
is called. This method parses the input parameters and creates the
appropriate Java object. The XML processing for this application is done
in the XMLProcessor class (Listing 9). The TicketBrokerServlet first cre-
ates a new instance of the XMLProcessor object. It then calls the init-
Parser() method on the TicketStoreXML class. The servlet’s input stream
is passed in as a parameter for the parser to parse the XML document
that the servlet received in its input stream.

FIGURE 1: Data interchange between online ticket store tiers

C
L
IE

N
T
 U

I

HTML

TicketQuery
Serialized

Java
Objects
(RMI)

BookingRequest

Purchase

Lease

Confirmation

Confirmation

Confirmation

TicketQuote

XML Documents

A
P

P
L
IC

A
T
IO

N
 S

E
R

V
IC

E
S

A
P

P
L
IC

A
T
IO

N
 S

E
R

V
IC

E
S

S
E

R
V

IC
E

 A
C

C
E

S
S

M
E

R
C

H
A

N
T
 S

E
R

V
E

R
CORBA

structures

Bytestreams

FIGURE 2: XML trees for the ticket reservation operations

ArrivalCity

Month Day

DepartureCity

TicketQuery TicketQuote

EndDate

Year Month Day

Year

BeginDate

Date

ReferenceNo
Airline

DepartureCity
ArrivalCity

NoOfSeats
Class

SeatingPreference
SmokingPreference

Price

Date

BookingRequest

ReferenceNo
Airline

NameList

DepartureDate

MonthYear Day
ArrivalDate

MonthYear Day

LastName FirstName LastName FirstName

BookingRequest

Confirmation

ConfirmationNo

Name Name

FIGURE 3: XML trees for the purchase and lease operations

FirstName LastName

Year Month Day

Name

ReferenceNo

Lease

Airport
Airline

FlightNumber
Date

Flight

ItemName ItemId Quantity

ItemList

FirstName LastName

Name

Street

Purchase

City
State
Country

Zip

Address

ItemName ItemId Quantity

ItemList

Passenger Passenger

33SEPTEMBER 1999

IAM
www.iam.com

34 SEPTEMBER 1999

Next, the method getQueryType() is called on the XMLProcessor ref-
erence (xp) to check what kind of an operation was invoked on the Tick-
etBrokerServlet. If the type is a “TicketQuery,” the method processTick-
etQuery() is called, which returns a TicketQuery object from the XML
document. Following this, the local method processQuery() is called.
This method goes across to the Application Services tier and gets back a
TicketQuote.

The method processQuery() was discussed in the previous article. I
have stubbed out the functionality to keep the listing short and focused.
To test the code, a TicketQuote is created directly. In the application a
call to getQuotes() will be made to the clientManager_; this will return a
vector of quotes, and the local getBestQuote() method would be called to
obtain the best quote. The end result is the same. We get an object that
encapsulates the best quote from the back-office tiers.

The next call made on the xp is processTicketQuote(). This takes in the
TicketQuote object we just obtained and returns a String, which is the
corresponding XML document that needs to be sent back to the Mer-
chant Server tier. This is appended to the result_ string and the string is
written back via the servlet’s output stream, toClient_.

XMLProcessor
Finally, let’s look at the class that does all the XML work. Note that this

class imports classes from the packages com.ibm.xml parser and
org.w3c.dom. The former contains the classes for IBM’s XML for Java
parser. The latter contains the W3C classes for XML documents.

The method initParser() creates a new instance of the XMLParser.
Next, the data is read in from the InputStream, input, which is actually
the TicketBrokerServlet’s input stream. Finally, the root of the document
is initialized.

The method processTicketQuery() is called from the TicketBro-
kerServlet’s processQuery() method. This method extracts the data from
the XML document received via the POST method and uses it to con-
struct a TicketQuery object. It returns the TicketQuery object to the call-
ing method. The first few lines of the method call the local method
processSingleTag(), a utility method for processing a single tag in an
XML document. Next, the Date element is parsed. The begin and end
dates are created as strings beginDate and endDate. Once the dates are
parsed, the data is used to create and return a new TicketQuery object to
the TicketBrokerServlet.

The next two methods are utility methods that aid in parsing XML
documents. The processSingleTag() method is a utility method that takes
in a tag String and an XML Element and returns its text value. A NodeIt-
erator is created and the first element in the list is extracted from the Ele-
ment that was passed in as an argument. Finally, the text value of this
extracted element is passed back. The processListTag() method is simi-
lar, except that the code iterates through a list of elements and passes
back a Vector of Elements to the calling method. The NodeIterator class
is used for this purpose.

The last method in this class is used to create an XML document from
a TicketQuote object, which is passed in as an argument to the method.
A new TXDocument is created and the root element (“TicketQuote”) is
created and inserted into the document. Next, the version for XML is set.
This is followed by a declaration of variables representing various levels
of the XML document structure. The XML document is going to be three
levels deep so three TXElements are created. The rest of the method cre-
ates and adds the elements to the tree. The values for the elements are
obtained from the “quote” variable passed in as the argument to this
method. The first element is the “ReferenceNo.” The “child” variable is
initialized to a new “referenceNo” TXElement object. Next, the text value
for this element is obtained from the quote object by calling getRefer-
enceNo(). This is added to the child element, which in turn is added to
the root element.

The rest of the method adds other elements in a similar fashion. In the
case of the Date elements, the tree is three levels deep. Hence the grand-
Child and greatGrandChild variable are used. At the end of the method,
the document is written to a StringWriter variable and returned to the
calling method.

Conclusion
We’ve now been through the entire exercise of creating XML docu-

ments for transporting data from one tier of a distributed application to
another, converting that XML document into a language-specific object,
sending it across to another tier, getting back another object, converting
this new object to an XML document and transporting it back to the
original tier. What have we gained? We’ve certainly added a lot of over-
head by using XML tags instead of plain strings.

Well, the big gain is in standardization and clarity in data formatting.
In the next couple of years, if all goes well, XML standards will start solid-
ifying in the marketplace for several industry verticals. These standards
will help provide universal definitions of data structures such as a
“Reservation” or an “Order.” Indeed, such standards are already appear-
ing in today’s marketplace.

As for the overhead, that’s a price we’ll have to pay for the benefits of
standardization. Take TCP/IP, for instance. When I first looked at a TCP
packet, I was shocked to discover that for each character of the login I
sent across the wire, the stack added 53 characters that encapsulated the
data in the packet. However, think of the universality that standards such
as TCP have brought to the computing world.

AUTHOR BIO
Ajit Sagar, a member of the technical staff at i2 Techologies in Dallas, Texas, holds an MS in computer
science and a BS in electrical engineering. He focuses on Web-based e-commerce applications and
architectures. Ajit is a Sun-certified Java programmer with nine years of programming experience,
including two and a half in Java.

<?xml version="1.0"?>
<TicketQuery>
<DepartureCity>Smallville</DepartureCity>
<ArrivalCity>Gotham</ArrivalCity>
<Date>
<BeginDate>
<Year>1999</Year>
<Month>12</Month>
<Day>31</Day>
</BeginDate>
<EndDate>
<Year>2000</Year>
<Month>1</Month>
<Day>1</Day>
</EndDate>

</Date>
<NoOfSeats>2</NoOfSeats>
<Class>First</Class>
<SeatingPreference>Window</SeatingPreference>
<SmokingPreference>No</SmokingPreference>

</TicketQuery>

<?xml version="1.0"?>
<TicketQuote>
<ReferenceNo>"SA2345678"</ReferenceNo>
<Airline>SeemaAir</Airline>
<DepartureCity>Smallville</DepartureCity>

<ArrivalCity>Gotham</ArrivalCity>
<Date>

<DepartureDate>
<Year>1999</Year>
<Month>12</Month>
<Day>31</Day>

</DepartureDate>
<DepartureTime>

<Hour>22</Hour>
<Minutes>00</Minutes>
</DepartureTime>

<ArrivalDate>
<Year>2000</Year>
<Month>1</Month>
<Day>1</Day>

</ArrivalDate>
<ArrivalTime>

<Hour>1</Hour>
<Minutes>30</Minutes>

</ArrivalTime>
</Date>
<NoOfSeats>2</NoOfSeats>
<Class>First</Class>
<SeatingPreference>Window</SeatingPreference>
<SmokingPreference>No</SmokingPreference>
<Price>"$1234.56"</Price>

</TicketQuote>

<?xml version="1.0"?>
<BookingRequest>

<ReferenceNo>"SA2345678"</ReferenceNo>
<Airline>SeemaAir</Airline>
<NameList>

<Name>

Listing 3: BookingRequest XML Structure

Listing 2: TicketQuote XML StructureListing 1: TicketQuery XML Structure

Ajit_Sagar@i2.com

35SEPTEMBER 1999

Object
Int’l

www.togetherj.com

36 SEPTEMBER 1999

<LastName>"Kent"</LastName>
<FirstName>"Clark"</FirstName>

</Name>
<Name>

<LastName>"Lane"</LastName>
<FirstName>"Lois"</FirstName>

</Name>
/NameList>

</BookingRequest>

<?xml version="1.0"?>
<Confirmation Type="Ticket">
<ConfirmationNo>"SA2345678"</ConfirmationNo>

</Confirmation>

<?xml version="1.0"?>
<Lease>
<Passenger>

<Name>
<LastName>"Kent"</LastName>
<FirstName>"Clark"</FirstName>

</Name>
</Passenger>
<Flight>
<ReferenceNo>"SA2345678"</ReferenceNo>
<Airport>"Sunita International Air-
port"</Airport>
<Airline>"SeemaAir"</Airline>
<FlightNumber>"SA 123"</FlightNumber>

<Date>
<Year>1999</Year>
<Month>12</Month>
<Day>31</Day>

</Date>
</Flight>
<ItemList>

<ItemName>"CD Player"</ItemName>
<ItemId>cd00321</ItemId>
<Quantity>1</Quantity>
<ItemName>"Book"</ItemName>
<ItemId>bookx453</ItemId>
<Quantity>1</Quantity>

</ItemList>
</Lease>

<?xml version="1.0"?>
<Purchase>

<Name>
<LastName>"Kent"</LastName>
<FirstName>"Clark"</FirstName>

</Name>
<Address>

<Street>"123 Tiny Lane"</Street>
<City>"Smallville"</City>
<State>"Kansas"</State>
<Country>USA</Country>
<ZIP>12345</ZIP>

</Address>
<ItemList>

<ItemName>"CD Player"</ItemName>
<ItemId>cd00321</ItemId>
<Quantity>1</Quantity>
<ItemName>"Book"</ItemName>
<ItemId>bookx453</ItemId>
<Quantity>1</Quantity>

</ItemList>
</Purchase>

// Please separate the listings into indi-
vidual
// files: e.g., TicketQuery.java, Tick-
etQuote.java

import java.io.*;
import java.text.*;
import java.util.*;

// **
// ** file TicketQuery.java
// **

public class TicketQuery implements Serial-
izable {

DateFormat df_ =

DateFormat.getDateInstance(DateFormat.SHORT
);

// Fields for a ticket query
private long queryId_ = 0;
private String departureCity_ = null;
private String arrivalCity_ = null;
private Date beginDate_ = null;
private Date endDate_ = null;
private int noOfSeats_ = 0;
private String seatClass_ = null;
private boolean aisle_ = false;
private boolean smoking_ = false;

// Full-arg constructor
public TicketQuery (String departureCity,

String arrivalCity,
String beginDate,
String endDate,
String noOfSeats,
String seatClass,
String aisle,
String smoking) {

// Generate new query ID
queryId_ = generateQueryId();

departureCity_ = departureCity;
arrivalCity_ = arrivalCity;

// The date Strings need to be parsed
setBeginDate(beginDate);
setEndDate(endDate);
setNoOfSeats(noOfSeats);
setSeatClass(seatClass);
setAisle(aisle);
setSmoking(smoking);

}

public long generateQueryId () {
// The current time is used to gener-
// ate the queryId.
// This way, we get a time stamp for
// the query.
return System.currentTimeMillis();

}

// -- Setter methods are required for
// these fields

public void setBeginDate (String begin
Date) {

try {
beginDate_ = df_.parse(begin
Date);

}
catch (ParseException pe) {

pe.printStackTrace();
}

}

public void setEndDate (String endDate)
{

try {
endDate_ = df_.parse(endDate);

}
catch (ParseException pe) {

pe.printStackTrace();
}

}

public void setNoOfSeats(String noOf-
Seats) {

noOfSeats_ = Integer.parseInt(noOf
Seats);

}

public void setSeatClass (String seat-
Class) {

seatClass_ = seatClass;
}

public void setAisle (String aisle) {
if (aisle.equalsIgnoreCase("YES"))

aisle_ = true;
else

aisle_ = false;
}

public void setSmoking(String smoking) {
if (smoking.equalsIgnoreCase("YES"))

smoking_ = true;
else

smoking_ = false;
}

// -- Getter methods for all the fields.

public long getQueryId ()
{ return queryId_; }

public String getDepartureCity ()
{ return departureCity_; }

public String getArrivalCity ()
{ return arrivalCity_; }

public Date getBeginDate ()
{ return beginDate_; }

public Date getEndDate ()
{ return endDate_; }

public int getNoOfSeats ()
{ return noOfSeats_; }

public String getSeatClass ()
{ return seatClass_; }

public boolean isAisle ()
{ return aisle_; }

public boolean isSmoking ()
{ return smoking_; }

}

// **
// ** file TicketQuote.java
// **

public class TicketQuote implements Serial-
izable {

// Fields for a ticket query
private String referenceNo_ = null;
private String airline_ = null;
private String departureCity_ = null;
private String arrivalCity_ = null;

// The Date fields include the time val
// ues
private Date departureDate_ = null;
private Date arrivalDate_ = null;

private int noOfSeats_ = 0;
private String seatClass_ = null;
private boolean aisle_ = false;
private boolean smoking_ = false;
private String price_ = "$0.00";

// Full-arg constructor
public TicketQuote (String referenceNo,

String airline,
String depar-

tureCity,
String arrivalCity,
Date departureDate,
Date arrivalDate,
int noOfSeats,
String seatClass,
boolean aisle,
boolean smoking,
String price) {

referenceNo_ = referenceNo;
airline_ = airline;
departureCity_ = departureCity;
arrivalCity_ = arrivalCity;
departureDate_ = departureDate;
arrivalDate_ = arrivalDate;
noOfSeats_ = noOfSeats;
seatClass_ = seatClass;

Listing 7: Data Objects for the Online store

Listing 6: Purchase XML Structure

Listing 5: Lease XML Structure

Listing 4: Confirmation XML Structure

37SEPTEMBER 1999

Force 5
www.force5.com

38 SEPTEMBER 1999

aisle_ = aisle;
smoking_ = smoking;
price_ = price;

}

// -- Getter methods for all the fields.

public String getReferenceNo ()
{ return referenceNo_; }

public String getAirline ()
{ return airline_; }

public String getDepartureCity ()
{ return departureCity_; }

public String getArrivalCity ()
{ return arrivalCity_; }

public Date getDepartureDate ()
{ return departureDate_; }

public Date getArrivalDate ()
{ return arrivalDate_; }

public int getNoOfSeats ()
{ return noOfSeats_; }

public String getSeatClass ()
{ return seatClass_; }

public boolean isAisle ()
{ return aisle_; }

public boolean isSmoking ()
{ return smoking_; }

public String getPrice () { return
price_; }
}

// PLEASE GO TO www.sys-con.com/java
// FOR THE FOLLOWING CLASSES

class Name {}
class BookingRequest {}
class Confirmation {}
class Address {}
class Item {}
class Lease {}
class Purchase {}

import java.io.*;
import java.util.*;
import java.rmi.*;
import java.text.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TicketBrokerServlet extends
HttpServlet {

protected HttpServletRequest request_ =
null;
protected HttpServletResponse response_
= null;
protected StringBuffer result_ = null;

XMLProcessor xp_ = null;
PrintWriter toClient_ = null;
DateFormat df = DateFormat.getDateIn-
stance(DateFormat.SHORT);

// TicketClientManager clientManager_ =
// null;

public void doPost (HttpServletRequest
request,

HttpServletResponse response)
throws ServletException, IOException {
try {

request_ = request;
response_ = response;

// Get a reference to the output
// stream
toClient_ = new

PrintWriter(response_.getOutputStream());

if (toClient_ == null) {
response_.sendError(1, "Null

toClient_ stream");

}

// etc.

result_ = new StringBuffer();
processParameters();

toClient_.println(result_.toString());
toClient_.flush();

}
catch (Exception e) {

e.printStackTrace();
}

}

private void processParameters () {
// XMLProcessor for converting XML to
// Java
xp_ = new XMLProcessor();

try {
InputStream in = request_.getInput-
Stream();
xp_.initParser(request_.getInput-
Stream());

}
catch (IOException ioe) {

ioe.printStackTrace();
}

String queryType = xp_.getQueryType();
if (queryType.equals("TicketQuery")) {

TicketQuery ticketQuery =
xp_.processTicketQuery();
processQuery(ticketQuery);

}
else if (queryType.equals("BookingRe-
quest")) {

// BookingRequest bookingRequest =
// xp_.processTicketBooking();
// processBooking(bookingRequest);

}
}

private void processQuery (TicketQuery
query) {

Vector quotes = null;

// !! Stubbed code. Typically, this
// will be replaced by a call
// !! to the appropriate client via
// the TicketClientManager.

// etc.

try {
TicketQuote ticketQuote =

new TicketQuote("SA123456",
"SeemaAir",
"SmallVille", "Gotham",

df.parse("12/31/1999"),

df.parse("1/1/2000"),
2, "First", false, false,
"$1234.56");

String xmlQuote = xp_.processTick-
etQuote(ticketQuote);
result_.append(xmlQuote);

}
catch (ParseException pe) {

pe.printStackTrace();
}

}

//Process a booking request.
private void processBooking (BookingRe-
quest bookingRequest) {

// etc.
}

// Return best quote from the quotes
// obtained from

// the Application Services tier
private TicketQuote getBestQuote (Vector
quotes) {

// etc.
return null;

}
}

import com.ibm.xml.parser.*;
import org.w3c.dom.*;
import java.io.*;
import java.util.*;
import java.text.*;

public class XMLProcessor {
Document doc_;
TXElement root_;
PrintWriter pw_ = null;

Calendar cal_ = Calendar.getInstance();

// Initialize the XML parser and document
public void initParser(InputStream input)
{

InputStream xmlStream =
getXMLStream(input);

Parser p = new Parser("XMLParser");
doc_ = p.readStream(xmlStream);
root_ = (TXElement) doc_.getDocu-
mentElement();

}

// Get a stream with the XML content only
public InputStream getXMLStream (Input-
Stream input) {

byte[] array = new byte[10000];
String str = null;
try {

input.read(array);
str = new String(array);

// Strip the null characters
int i = str.indexOf('\0');
str = str.substring(0, i);

}
catch (IOException e) {

e.printStackTrace();
}

int beginXML = str.indexOf("<?xml ver-
sion");
int endXML = str.lastIndexOf(">") + 1;
str = str.substring(beginXML, endXML);
return new

ByteArrayInputStream(str.getBytes());
}

// Root tag name
public String getQueryType () {

return root_.getName();
}

// Extract XML into a Java TicketQuery
// object
public TicketQuery processTicketQuery ()
{

String departureCity = processSingle-
Tag("DepartureCity", root_);
String arrivalCity = processSingle-
Tag("ArrivalCity", root_);
String noOfSeats =
processSingleTag("NoOfSeats", root_);
String seatClass =
processSingleTag("Class", root_);
String seatingPref = processSingle-
Tag("SeatingPreference", root_);
String smokingPref = processSingle-
Tag("SmokingPreference", root_);

TXElement txe = null;

Listing 9: java:
XML processor for the Online Ticket Store

Listing 8: TicketBrokerServlet.java

39SEPTEMBER 1999

NodeIterator iterator1 = root_.getEle-
mentsByTagName("Date");

// There is only one Date element
TXElement dateElement =
(TXElement)iterator1.toFirstNode();

NodeIterator iterator2 =
dateElement.getElementsByTagName("Begin
Date");

TXElement beginDateElement = (TXEle-
ment)iterator2.toFirstNode();

String beginYear =
processSingleTag("Year", beginDateEle-
ment);
String beginMonth = processSingle-
Tag("Month", beginDateElement);
String beginDay =
processSingleTag("Day", beginDateEle-
ment);

String beginDate = beginMonth + "/" +
beginDay + "/" + beginYear;

iterator2 = dateElement.getElementsBy-
TagName("EndDate");

TXElement endDateElement = (TXEle-
ment)iterator2.toFirstNode();

String endYear =
processSingleTag("Year", endDateElement);
String endMonth =
processSingleTag("Month", endDateEle-
ment);
String endDay =
processSingleTag("Day", endDateEle-
ment);

String endDate = endMonth + "/" + end-
Day + "/" + endYear;

return new TicketQuery(departureCity,
arrivalCity, beginDate, endDate,

noOfSeats,
seatClass, seatingPref, smokingPref);

}

// Process a single tag from an XML doc-
// ument
public String processSingleTag(String

tag, Element startNode) {
TXElement e;
Node n;
String textValue = null;
NodeIterator iter = startNode.getEle-
mentsByTagName(tag);

int length = iter.getLength();

if (length != 1) {
System.out.println("Houston we have
a problem with tag: " + tag);

}
else {

n = iter.toFirstNode();
e = (TXElement) n;
textValue = e.getText();

}

return textValue;
}

// Process a list of tags from an XML
// document
public Vector processListTag(String tag,
Element startNode)
{

TXElement e, cElement, cTemp;
Node n;
Vector list = null;
String text;

System.out.println("tag = " + tag + ",
startNode = " + startNode);
NodeIterator iter = startNode.getEle-
mentsByTagName(tag);

int length = iter.getLength();

if (length != 0) {
list = new Vector();

}

for (int i = 0; i < length; i++) {
n = iter.moveTo(i);
e = (TXElement) n;
list.addElement(e);

}
return list;

}

// Create an XML document from the Tick-
// etQuote object
public String processTicketQuote (Tick-
etQuote quote)
{

TXDocument doc = new TXDocument();
TXElement root = new TXElement("Tick-
etQuote");
doc.insert(root, 0);
doc.setVersion("1.0");

TXElement child, grandChild, great-
GrandChild;
TXText text;

child = new TXElement("ReferenceNo");
text = new TXText((quote.getReferen-
ceNo()).toString());
child.addTextElement(text);
root.addElement(child);

child = new TXElement("Airline");
text = new TXText((quote.getAir-
line()).toString());
child.addTextElement(text);
root.addElement(child);

child = new TXElement("Depar-
tureCity");

text = new TXText((quote.getDepar-
tureCity()).toString());
child.addTextElement(text);
root.addElement(child);

child = new TXElement("ArrivalCity");
text = new TXText((quote.getArrivalCi-
ty()).toString());
child.addTextElement(text);
root.addElement(child);

child = new TXElement("Date");
root.addElement(child);

grandChild = new TXElement("Departure-
Date");
child.addElement(grandChild);

Date date = quote.getDepartureDate();
cal_.setTime(date);

greatGrandChild = new
TXElement("Year");
text = new
TXText(String.valueOf(cal_.get
(Calendar.YEAR)));
greatGrandChild.addTextElement(text);
grandChild.addElement(greatGrandChild);

greatGrandChild = new
TXElement("Month");
text = new
TXText(String.valueOf(cal_.get
(Calendar.MONTH)));
greatGrandChild.addTextElement(text);
grandChild.addElement(greatGrandChild);

greatGrandChild = new
TXElement("Day");
text = new
TXText(String.valueOf(cal_.get
(Calendar.DAY_OF_MONTH)));
greatGrandChild.addTextElement(text);
grandChild.addElement(greatGrandChild);

grandChild = new TXElement("Arrival
Date");
child.addElement(grandChild);

date = quote.getArrivalDate();
cal_.setTime(date);

greatGrandChild = new
TXElement("Year");
text = new
TXText(String.valueOf(cal_.get
(Calendar.YEAR)));
greatGrandChild.addTextElement(text);
grandChild.addElement(greatGrandChild);

greatGrandChild = new
TXElement("Month");
text = new TXText(String.valueOf
(cal_.get(Calendar.MONTH)));
greatGrandChild.addTextElement(text);
grandChild.addElement(greatGrandChild);

greatGrandChild = new
TXElement("Day");
text = new
TXText(String.valueOf(cal_.get
(Calendar.DAY_OF_MONTH)));
greatGrandChild.addTextElement(text);
grandChild.addElement(greatGrandChild);

child = new TXElement("NoOfSeats");
text = new TXText(String.valueOf
(quote.getNoOfSeats()));
child.addTextElement(text);
root.addElement(child);

child = new TXElement("Class");
text = new TXText((quote.getSeat-
Class()).toString());
child.addTextElement(text);
root.addElement(child);

child = new TXElement("SeatingPrefer-
ence");
text = new TXText(String.valueOf
(quote.isAisle()));
child.addTextElement(text);
root.addElement(child);

child = new TXElement("SmokingPrefer-
ence");
text = new TXText(String.valueOf
(quote.isSmoking()));
child.addTextElement(text);
root.addElement(child);

child = new TXElement("Price");
text = new TXText((quote.getPrice())
.toString());
child.addTextElement(text);
root.addElement(child);

StringWriter dString = new String-
Writer();
doc.printWithFormat(new
PrintWriter(dString));
return dString.toString();

}
}

Code listings for this article can also be located at
www.JavaDevelopersJournal.com

▼▼▼▼ CODE LISTING ▼▼▼▼

These technologies won’t replace each other – they’re complementary

WRITTEN BY
ANDREW WATSON

CORBA and XML: Conflict or Cooperation?

E
very now and then the computer industry gets swept up in a wave of enthusiasm for some new silver
bullet that’s apparently going to solve everyone’s problems overnight. Actually, these days the wild
surges of millennial euphoria seem to come at annual intervals. Usually the technology in question is
actually a step forward, able to solve real problems better or faster than was possible before. However,
as word spreads about the power of the new technique, some people will inevitably try to apply it to the
wrong problems.

C O R B A C O R N E R

40 September 1999

It’s a bit like the enthusiasm for
microwave ovens when they first
became cheap enough for anyone to
buy – one could buy microwave cook-
books explaining how to use them to
cook everything from a complete Christ-
mas dinner to a soufflé. Fortunately,
after a while sanity returned, and people
now use microwaves for what they’re
best at, and have gone back to making
toast in the toaster or roasting the turkey
in the oven, just as they always did,
because they’re the best tools for the job.

The same is true in the computer
business, and as with cooking gadgets,
it’s important to get the balance right.
Pointing out that you shouldn’t try to
make soup in your breadmaker doesn’t
in anyway diminish the fact that it’s very,
very good at making bread. In the same
way, this article aims to put the current
enthusiasm for XML in perspective
without in any way detracting from or
criticizing XML, which is an excellent
tool for the job for which it was
designed. However, the question “Will
XML replace middleware?” is being
asked so often at the moment that it
seems appropriate to pen a few words
on what applications XML is (and is not)
suited for, and in particular why it isn’t
going to replace middleware solutions
like CORBA (or vice versa, for that mat-
ter). To do this properly, we have to start
with a little history. So, are you sitting
comfortably? Then we’ll begin.

A Little History
XML – eXtensible Markup Language –

is a simplified subset of a previous
markup language standard called SGML
(Standard Generalized Markup Lan-
guage) and was devised by a committee
of the World Wide Web consortium in
response to the need for a generaliza-
tion of HTML, the HyperText Markup
Language used to format Web pages.

SGML was conceived as a successor
to document-markup languages like

TeX, troff and nroff. These languages
add formatting directives to plain text to
tell typesetters, laser printers and other
high-quality output devices how to for-
mat the text in various fonts of different
sizes and styles. When they first
appeared in the 1960s, markup lan-
guages were designed to be written by
hand; one would use a text editor to cre-
ate a plain text document, adding in the
occasional markup directive to indicate
that some piece of text should be print-
ed in bold or centered or whatever. Of
course, it was important to make sure
there was no confusion between the
content and the markup directives, so
each family of markup languages had a
set of conventions for separating them.
For instance, in nroff and troff the direc-
tives are on lines beginning with a full
stop (or period), while TeX begins direc-
tives with a “\” character.

As the use of markup languages
became widespread, macros were
added as a convenience feature. If head-
ings in your document are to be dis-
played in centered bold 14 point Hel-
vetica, it would soon get tedious to write
four directives to change font, size,
weight and justification for each head-
ing. With a macro facility one can define
a single command to do all this. Better
yet, if you later decide your headings
should be in Zapf Chancery instead,
changing the definition of the “heading”
macro automatically does the job every-
where you’ve used the macro.

Structure vs Presentation
Pretty soon authors creating complex

documents found themselves maintain-
ing large libraries of macro definitions
and never using raw formatting direc-
tives in the documents at all. UNIX man
pages are a good example – they’re
defined using the “man” macros for the
nroff text formatter, making it easy to
create manual pages with a consistent
appearance.

During the ’70s and ’80s it became
clear that the best way to use markup was
by formalizing this approach: create a set
of directives for describing the structure
of the document as sections, subsections,
bulleted items and so on, then separately
define how to format those structural ele-
ments on paper. By keeping these two
kinds of definitions (of structure and pre-
sentation) separate, altering the format-
ting of the documents or even reusing the
content in new documents could be a
completely mechanical process. Further-
more, automatic tools can process the
documents to do jobs like building a con-
tents page by listing all the headings. If
your job is maintaining the many tons of
paper documentation for (say) a com-
mercial airliner, representing the logical
structure of the document in this way is
no small advantage since it allows the
same source documents to be used to
deliver information in a number of differ-
ent formats. Again, UNIX man pages are
a good example; when the manuals are
printed on a high-resolution printer,
using the same source text with a differ-
ent library of (troff) macro definitions
automatically creates book-quality man-
ual pages rather than the screen-format-
ted pages generated from the same
sources by nroff.

SGML, DSSSL and HTML
SGML was designed by ISO (the Inter-

national Standards Organization) as a
new standardized markup language that
enshrined this separation of structure
and presentation. To apply SGML one
creates a Document Type Definition
(DTD) that defines the set of valid tags for
the documents being created, and uses
DSSSL (the ISO-standardized Document
Style Semantics and Specification Lan-
guage that accompanies SGML) to define
how to display text labeled with those
tags. Between them the DTD and DSSSL
definitions fill the same role as the macro
library in older markup languages.

41September 1999

Riverton
www.riverton.com

42 September 1999

C O R B A C O R N E R
SGML has achieved limited success in

large organizations that maintain very
large documentation sets, but the SGML
standard alone is over 500 pages, and
the accompanying DSSSL (rhymes with
“whistle”) standard is also rather large
and uses a syntax based on the Scheme
programming language, which some
people find hard to learn. Many users
lack the will or resources to climb the
SGML learning curve.

Meanwhile, at CERN in Geneva, Tim
Berners-Lee was creating a simple
SGML DTD to define a few document
structure tags like “heading” and “num-
bered list” for defining the structure of
documentation to be shared between
nuclear physicists over computer net-
works. This simple application of SGML,
called HTML, didn’t have any accompa-
nying way of defining the appearance of
documents – that was provided by set-
tings in the Web browser used to display
the HTML document. The original
HTML specification was simply a con-
forming SGML DTD describing the syn-
tax of HTML documents, with the added
wrinkle that one of the tags defined a
way to hyperlink to another HTML doc-
ument.

HTML, of course, has been much
more widely used than SGML, but as its
use spread, two problems became
apparent. The first was that HTML
defined only the structure of Web page
elements, with no associated way of
specifying their presentation, so the
Web page designers had no way of con-
trolling exactly how their creations
looked. As Web pages became more
sophisticated, with more graphic con-
tent, this became a serious problem,
and ad hoc extensions were added to
HTML to allow direct control of presen-
tation by specifying fonts, font sizes, text
colors and so on (which of course com-
pletely violates the original SGML
design principles). At the same time,
because the HTML had one fixed DTD,
document designers had no way to cre-
ate new structure tags to represent doc-
ument structure in certain HTML appli-
cations. With neither an extension
mechanism (like macros) nor a way of
defining and controlling presentation,
the original HTML fell neatly between
two stools, and short-term product
development pressures have inevitably
pushed it toward being a presentation
markup language that provides the Web-
page designer with detailed control over
how his/her document appears, rather
than representing its logical structure.
While this deals effectively with the pri-
mary purpose of Web pages, which is to
be viewed by people using Web
browsers, the increasing size and ubiq-

uity of the Web is creating an increasing
demand for Web pages that can be
manipulated by Web-scanning “robots”
such as the search engines that “read”
and catalog millions of Web pages daily.
It became clear that the lack of struc-
tured encoding threatened to slow down
the development of the Web.

Enter XML
One solution to the problem of

HTML’s lack of structure would simply
have been to step up one level and use
SGML and DSSSL directly on the Web.
However, the complexity of the ISO
standards mitigated against this; some-
thing simpler was needed. In mid-1996
Jon Bosak, an influential member of the
SGML community, persuaded W3C to
set up an SGML Editorial Review Board
and Working Group to define a simpli-
fied, extensible subset of SGML
designed for the Web. The final XML 1.0
specification was published by W3C in
February 1998, and will be complement-
ed by two further specifications current-
ly being prepared: XLL (the eXtensible
Linking Language, for defining how
XML documents are linked together)
and XSL (the eXtensible Style Language,
for defining how XML markup is format-
ted for display).

What Should XML Be Used For?
XML is being enthusiastically em-

braced in many application domains
because a lot of applications need to
store data intended for human use, but
will also be useful to manipulate by

machine. One example might be storing
and displaying mailing list information.
Defining and using an XML DTD for
storing address data makes it compara-
tively easy to write applications to (say)
generate address labels without inad-
vertently printing the phone number in
the postcode field. There are a large
number of initiatives to replace home-
grown markup formats with applica-
tions of XML – examples include Bioin-
formatic Sequence Markup Language
(BSML), Weather Observation Markup
Format (OMF), the Extensible Log For-
mat (XLF – a markup format for logging
information generated by Web servers)
and others for legal documents and real
estate information, and many more. In
each case the working group simply
needs to define a DTD that defines the
tags and how they can be legally com-
bined. These DTDs can then be used
with XML parsers and other XML tools
to rapidly create applications to process
and display the stored information in
whatever way is required. Of course,
there are still standardization issues to
be addressed, such as who controls the
libraries of tag definitions, how to man-
age version control in those libraries,
and how to manage using multiple
libraries simultaneously (especially
when tag names collide). Nevertheless,
using XML for these applications is a lot
simpler than creating a completely new
markup language from scratch every
time, with a lot more scope for reusing
the work of others.

One important point to note is that
nowhere in the XML DTDs is there a way
of specifying what an XML tag “means,”
just where it can be positioned in rela-
tionship to other tags, and (using XSL)
how to format it on a display. Creators of
XML DTDs naturally choose short
descriptive names for their tags just as
PC users usually choose short descrip-
tive names for their files, so it’s very
appealing to think that XML files are
“self-describing,” because to an English
speaker it’s intuitive that an <address>
tag labels an address or a <date-of-
birth> tag labels a person’s birthday.
However, this is just the intuitive “mean-
ing” we assign to the terms by assuming
that the creator of the DTD used these
words in the way we would expect; if the
creator of the DTD had instead specified
his tags in a foreign language or using
some private code, we’d be none the
wiser. XML files are in fact just as “self-
describing” as a C program or a data-
base schema.

What Shouldn’t XML Be Used For?
The common thread in XML applica-

tions is that the document content is

XML and
middleware are
complemetary
technologies....
Neither of these

technologies
will replace
the other

‘‘

’’

43September 1999

Inetsoft
www.inetsoftcorp.com

44 September 1999

andrew@omg.org

intended to be read by people. Because
XML is intended for marking up human-
readable, textual data, it is by the same
token a rather inefficient way of storing
information that only needs to be
machine-readable. The embedded XML
tags provide a way to extract or format
particular parts of the content, but the
content itself won’t usually be interpret-
ed by the computers, only by the ulti-
mate human user – which is why it
makes sense to store it in human-read-
able form. Of course, it’s perfectly possi-
ble to write parsers to read in (say) for-
matted floating-point numbers from an
XML file so they can be processed, but
it’s relatively time-consuming, and the
XML file would be relatively larger than
one written in native floating-point for-
mat.

When the requirement is to exchange
data between cooperating computer
applications, there are other, more effi-
cient ways of defining and storing the
data. Traditionally these definitions of
data formats for machine communica-
tion are called Interface Definition Lan-
guages (IDLs) because they’re used for
defining the interfaces between cooper-
ating computer applications. In contrast
to markup, which is used for the long-
term storage of human-readable data,
IDLs define the smaller packets of tran-
sient, machine-readable data that is

exchanged between the components of
a distributed application when some
particular event occurs.

IDLs are the most visible components
of a class of software known as “middle-
ware,” that class of software that is nei-
ther part of an operating system nor an
application but is used to link the vari-
ous parts of a distributed application
spread across geographically separated
computers. By their very nature, suc-
cessful middleware solutions blend into
the background, making few imposi-
tions on the users, designers and pro-
grammers of a distributed system.
Today’s most widely used middleware
packages all implement the CORBA
(Common Object Request Broker Archi-
tecture) specification, published by the
OMG (Object Management Group).

Although IDL is the most visible
aspect of middleware, there’s much
more to it than that: middleware solu-
tions like CORBA also provide security
to authenticate users and control access
to resources, error handling to graceful-
ly handle the failures inevitable in a dis-
tributed computing system, and a host
of other support functions to keep com-
puter networks running smoothly. In
these sorts of distributed computing
applications the data are transient,
transferred between computers, often
not permanently stored anywhere and

probably never seen by human eyes. To
use XML as the data encoding in such
applications is less efficient than the
compact, native machine representa-
tions used to marshal data in (for
instance) the IIOP wire format used by
CORBA implementations. Of course, if
the requirement is to store data for the
long term and extract human-readable
summaries and reports, then XML
would be the more appropriate medium
– but for the data exchanges that tie
together the components of a distrib-
uted system, using XML would be
expensive and pointless.

Summary
XML and middleware are comple-

mentary technologies. XML is intended
for the storage and manipulation of text
making up human-readable documents
like Web pages, while middleware solu-
tions like CORBA tie together cooperat-
ing computer applications exchanging
transient data that will probably never
be directly read by anyone. Neither of
these technologies will replace the
other. Instead, they will increasingly be
used together – not least in the specifi-
cations published by OMG, the body
responsible for the CORBA specifica-
tion.

AUTHOR BIO
Andrew Watson, OMG’s

VP and technical director,
also chairs OMG’s

Architecture Board, which
oversees the technical

consistency of all OMG’s
specifications. Previously
he chaired OMG’s ORB

task force, which was
responsible for the
development and

deployment of the
CORBA 2 specification.

Before that he spent six
years with the ANSA core
team in Cambridge (UK)

researching distributed
object architectures,

specializing in distributed
object type systems.

C O R B A C O R N E R

SlangSoft
www.slangsoft.com

45September 1999

Insignia
www.insignia.com

46 SEPTEMBER 1999

Also participating in the interview was Ajit Sagar, guest editor of this XML Focus issue of Java Developer’s Journal

S Y S - C O N R A D I O

SYS-CON RADIO INTERVIEW
WITH BOB SUTOR, XML Industry Standards Manager,

IBM, and Chief Strategy Officer, OASIS

(continued on page 75)(continued on page 75)

Q:

Q:
A:

Q:
A:

Q:
A:

Q:
A:

Q:
A:

Q:
A:

JDJ: Let’s start off with XML in rela-
tion to IBM, Bob. Can you tell us
why XML is important to the market
and to IBM?
Sutor: XML provides a standardized, flexi-
ble and powerful method for exchanging
data among many different platforms and
applications across the Internet. IBM is a
leader in database and transaction sys-
tems, and XML will be the standard mech-
anism for interoperability among data
warehouses, repositories and Web appli-
cations. Now IBM, of course, is a very big
business, so in addition to the services
and products we provide for our cus-
tomers, we’re using XML to make our-
selves a first-class e-business. It’s basically
just a great way of representing data. I
usually like to think about what XML is
about using four “I”s:

I think of XML first of all being about
Information, perhaps messages
(exchanged between applications or plat-
forms) or Web documents.

Interoperability comes next: getting
applications that previously had propri-
etary file formats to open up and talk to
each other. This extends the life of both
the applications and the data.

Integration: using this data coming
from lots of different sources together to
create new products that you never really
imagined before.

Independence: I mentioned platform
independence, but also device indepen-
dence. People are using PalmPilots,
browsers and ATMs for financial applica-
tions, and XML allows you to present this
information to all these different devices.

JDJ: What’s IBM’s role in helping to
develop XML?
Sutor: Two ways: first of all, in the W3C,
which we think of as the core horizontal
standards organization. We’re involved
with most of the key XML working groups
such as XML Schema. I myself, for exam-
ple, was one of the authors of the Docu-

ment Object Model. On the industry side,
traditionally we’ve been involved with a
number of the industry-specific consor-
tiums such as the OAG and the OMG, and
recently such things as the Open Travel
Alliance and the Financial Products
Markup Language with one of our cus-
tomers, J.P. Morgan. Really recently, one
I’m personally very excited about –
because it happened at OASIS – is
XML.org. This is a brand new organization
that has come together to act as an
umbrella for developing standards.

Sagar: Do you feel that at some
point XML may replace EDI?
Sutor: I expect that there will be a tran-
sition from using traditional EDI formats
to more open XML standards that are
being developed. In the meanwhile,
there are a lot of people doing conver-
sions between the old formats and the
new ones. One example is the Financial
Information Exchange. They’ve come up
with very nice methods for preserving
the old-style methods while moving to a
new XML format.

Segar: Some people are seeing it as
coming in and solving all the data-
formatting problems. And you know,
being in the industry long enough,
nothing really solves all the prob-
lems. There’s a lot of hype associat-
ed with XML and then there’s some
reality. Would you elaborate on
what you think may be the direction
it’s going to take and maybe what
problems it’s not going to solve?
Sutor: It’s an enabling technology, so it
doesn’t solve the problems by itself. It
allows you to develop new markup lan-
guages. But you have to create those cor-
rectly and they should be done in a ven-
dor-neutral way. For example, there’s a fair
amount of data modeling that should be
done to produce a good XML DTD or
schema. If it’s done badly, you’re going to

have a bad product. A lot of what we’re
doing is introducing people first of all to
the technology so they’re aware of it, and
then showing them how they can really
use XML in the best possible way to inte-
grate it with their products. From a devel-
oper’s point of view, getting started with
XML is very easy. If you go back to your
EDI question, parsing out that EDI infor-
mation and getting the information can be
tricky because it’s all encoded very tightly,
although that might be efficient for mov-
ing the data around. XML is simple to read
and it’s easy to write new applications.
There are parsers such as our XML4J that
are available for free right now so the bar-
rier for entry is very low. I think what’s
really generating a lot of the excitement
about it is that there are so many tools
available, such as those on our alpha-
Works site. So the developers are very
excited, but there’s real work to be done
by industry groups to create high-quality
DTDs.

Sagar: One of the things you men-
tioned earlier was that XML is now
going out across the wireless,
PalmPilots; there’s WML; there’s
3XML, WIDL. One of the dangers I
see coming up is that there will be
so many vertical definitions of XML
in industry that it’s going to be a
hard thing to actually keep a tight
rein on what is going on. Is OASIS
planning to help solve such prob-
lems? Do they have some strategy as
to how to control what becomes
standardized?
Sutor: Sure, the strategy is summed up
by XML.org. We see XML.org as being in
many ways complementary to W3C but
for industry-specific standards. This means
that XML.org can act as an umbrella for
bringing together people to work on stan-
dards in industries. Thus there would be
less need to set up all the “.org” XML Web
sites we’ve been seeing. They could work

within XML.org and have, for example, a
human resources XML working area and
write their standards there. It’s actually a
little trickier because there are many fine
consortiums already out there that have
developed standards. We are developing
liaison relationships with many consor-
tiums, but since things are being worked
out, I don’t want to talk about the details
right now. If there’s another organization
that we can look at and say, “You have
really done this in the right way. You have
brought in enough people in the industry.
People are agreeing to this and it has real,
practical applications and implementations
are happening,” then in some sense we
would like to liaison with them and be
able to recommend their work.

JDJ: Getting back to open standards.
Why should developers care about
open standards?
Sutor: I’ve been a developer for a long
time and I know how easy it is to create
proprietary data formats. XML provides a
really easy way of providing data in a for-
mat that can be changed easily and
reused by other applications. Open stan-
dards are good because of the interoper-
ability and integration aspects I mentioned
before. In the long run standards lower
the support costs because fewer technolo-
gies are involved. The data and the appli-
cation will both be useful for a much
longer time and the data will not be tied
to particular platforms. This is important
because 70% of the Fortune 1000 compa-
nies use three or more server platforms.
Just as Java means portable programs,
XML means portable data.

Sagar: Since this interview is coming
out in JDJ, I’d like your opinion on
the relationship between XML and
Java. Do they play well together?
And what is the role that OASIS or
XML.org will play in defining the
standards for the Java industry?

47SEPTEMBER 1999

Elixir
www.elixirtech.com

SHOP ONLINE AT JDJSTORE.COM FOR BEST PRICES OR CALL YOUR ORDER IN AT 1-888-303-JAVA

EASTLAND DATA SYTEMS

Internet Shopping with
Java Shopping Cart
…Described as the most progressive and interac-
tive form of shopping on the web today…This
Java Applet provides a com-
plete user interface package for
Internet Shopping Web Sites.
Using Java technology we pro-
duce a drag-and-drop shopping
user interface that is fun and
easy to use, encouraging shop-
pers instead of frustrating them
with confusing controls that are hard to follow. And
the easier it is to shop, the more you sell.
. $29499

888-303-JAVAORDER TODAY!

Guaranteed Best Prices
JDJ Store Guarantees the Best Prices.
If you see any of our products listed anywhere at a
lower price, we'll match that price and still bring
you the same quality service.

Terms of offer:
• Offer good through August 30, 1999
• Only applicable to pricing on current

versions of software
• August issue prices only
• Offer does not apply towards errors in

competitors' printed prices
• Subject to same terms and conditions

Prices subject to change.
Not responsible for typographical errors.

Attention Java Vendors:
To include your product in JDJStore.com,
please contact jackie@sys-con.com

Hybrid Shopping Cart
This Java Applet provides a complete user inter-
face package for Internet Shopping Web Sites. A
"Hybrid" is defined as an offspring of two varieties.
A blending of the best features from our CGI and
Java shopping products, we
took the most powerful aspects
of Java technology; real-time,
on-screen updating and com-
putational capabilities. And
combined those with the most
desirable features of our CGI
shopping Cart, namely it's flexibility and compati-
bility with web designers with artistic talent.
. $29499

CGI Shopping Cart
The Shopping Cart automates the Shopping
Process to make shopping on your site intuitive,
straight forward, and enjoyable! It's one of the
most affordable Shopping Carts
because it was designed for
small businesses. Specifically
for entrepreneurs who are test-
ing the Internet waters, and
can't or don't want to make
large investments into bells and
whistles for their site. But simply want to make
shopping on their site easy for the customer.
. $29499

Take a look
at our specials

this month!

Take a look
at our specials

this month!

SYBASE
PowerBuilder Enterprise v.7

Release 7.0 of the market-leading enterprise
development environment offers significant
productivity enhancements and broad support for
Web-based component standards. With the new
HTML DataWindow, you can deploy to all major Web
browsers. Tight integration in both development and
deployment with EAServer offers highly competitive
reliability, availability, and scalability (RAS) for PB
applications developed for the Web.

PowerBuilder Enterprise v.7 . $278999

SYBASE
SQL Anywhere Studio

JRun is the industry-leading tool for deploying
server-side Java. JRun is an easy-to-use web server
'plugin' that allows you to deploy Java Servlets and
JavaServer Pages. Servlets form the foundation for
sophisticated server-side application development.
Java servlets are platform independent, easy to
develop, fast to deploy, and cost-effective to
maintain.

SQL Anywhere Studio 1 user price $33599

SQL Anywhere Studio 5 user price $84999

SYBASE
PowerJ Enterprise

PowerJ provides a true end-to-end solution for
building sophisticated Internet applications,
exploiting the benefits of HTML, Java clients, and
delivering powerful Java server-side components.
PowerJ not only offers powerful database
capabilities -- it also integrates seamlessly with
Sybase Enterprise Application Server, enabling
enterprise-class applications from creation, to
testing and debugging, to deployment.

PowerJ . $30499

SYBASE
Adaptive Server Enterprise for WIN NT

With the release of Adaptive Server Enterprise 11.9.2,
Sybase introduces for - the first time - row-level
locking (RLL) capabilities designed to provide faster
performance, fewer deadlock contentions, and greater
flexibility in the management of system resources. In
addition to the new locking schemes, the Adaptive
Server Enterprise 11.9.2 will include enhancements to
the optimizer, query processing improvements such as
index statistics and descending keys, database
recovery enhancements and improved
space management features.

Adaptive Server Enterprise . $84599

(Base product)

SYMANTEC’s
Visual Café

Professional Edition
JDJStore.com Price . . $25899

COMPARE...
Programmer’s Paradise Price $25995

Beyond.com Price $29975

IBM’s
VisualAge for Java 2.0

Enterprise Edition
JDJStore.com Price . . $2,49899

COMPARE...
Programmer’s Paradise Price $2,49900

Beyond.com Price $2,52500

BORLAND’s
JBuilder 3

Professional New User
JDJStore.com Price . . $53999

COMPARE...
Programmer’s Paradise Price $54599

Beyond.com Price $54899

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

SHOP ONLINE AT JDJSTORE.COM FOR BEST PRICES OR CALL YOUR ORDER IN AT 1-888-303-JAVA

INSTANTIATIONS
JOVE Starter Kit

The JOVE(tm) Super Optimizing Deployment
Environment(tm) lets you create and deploy
the world's fastest, most efficient Java
applications. JOVE combines aggressive
whole-program and object-oriented opti-
mization technologies, native compilation, and a scaleable runtime archi-
tecture and deployment environment. The runtime system includes
state-of-the-art multi-threaded generational garbage collection, native
multi-threading, low overhead polymorphism, and a number of other
incredible technology pieces. As a result of all this technology, JOVE
enables the creation of very high performance, robust executable files
for the deployment of very large, complex Java applications.

JOVE Super Optimizing Deployment Environment. . . . $449499

INSTALLSHIELD
InstallShield Java Edtion 2.5

InstallShield Java Edition 2.5 is the
powerful tool developers require to
produce bulletproof InstallShield instal-
lations with Java versatility. You can
target your application for multiple sys-
tems with cross-platform distribution.
And InstallShield Java Edition 2.5
offers the key features and functionali-
ty designed to let developers go further
in distribution and deployment.

InstallShield Java Edition $47499

ALLAIRE
HomeSite 4.0

HomeSite is the award-winning HTML
editing tool that lets you build great
Web sites in less time, while maintain-
ing Pure HTML. Unlike WYSIWYG
authoring tools, HomeSite gives you
precise layout control, total design flexi-
bility and full access to the latest Web
technologies, such as DHTML, SMIL,
Cascading Style Sheets and JavaScript.
HomeSite 4.0 is the only HTML editor
featuring a visual development environment
that preserves code integrity.

HomeSite 4.0 . $8799

WWW.JDJSTORE.COM

GUARANTEED
BEST PRICES
FOR ALL YOUR
JAVA RELATED
SOFTWARE
NEEDS

World class
 AWARD

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

BUY THOUSANDS
0F PRODUCTS AT

GUARANTEED
LOWEST PRICES!

KL GROUP
JProbe Suite

JProbe Profiler is the most powerful tool available
for finding and eliminating performance bottle-
necks in your Java code. JProbe Coverage makes
it easy to locate individual lines of untested codes
and reports exactly how much of your Java code
has been tested. JProbe Threadalyzer lets you
pinpoint the cause of stalls and and deadlocks in
your Java applications and makes it easy to predict race conditions that can
corrupt application data.

JProbe Profiler w/Standard Support
(includes JProbe Memory Debugger) $46499

JProbe Suite w/Standard Support $93499

IBM
WebSphere Application Server

Whether it's business integration, Web self-service or e-commerce, IBM
WebSphere Application Server provides the software and tools for build-
ing and deploying Web-based applications. With Standard, Advanced and
Enterprise editions, Application Server supports all your e-business
needs, from simple Web transaction processing to enterprise-wide Web
applications. An open, extensible solution providing the highest levels of
performance, security, availability and scalability, WebSphere Application
Server leverages your existing IT investment to create new opportunities
- now and into the future

WebSphere Application Server Standard Edition v2.02
. $66899

ALLAIRE
ColdFusion 4.0

JBuilder 3 Professional Edition is the most
comprehensive set of award-winning visual
development tools for creating platform-inde-
pendent business applications, Pure Java,
servlets, applets and JavaBeans for the Java
2 platform. Only JBuilder 3 combines the
productivity of 300+ reusable JavaBeans
with source, the ease of visual drag-and-drop
Java 2 JFC/Swing development, an automat-
ic database Application Generator and scal-
able database tools with JDBC connectivity.

ColdFusion 4.0 . $35499

SkillBuilding with ColdFuion Interactive Training CD. . . . $28499

BORLAND
JBuilder 3 Professional Edition

JBuilder 3 Professional Edition is the most com-
prehensive set of award-winning visual develop-
ment tools for creating platform-independent
business applications, Pure Java, servlets,
applets and JavaBeans for the Java 2 platform.
Only JBuilder 3 combines the productivity of
300+ reusable JavaBeans with source, the ease
of visual drag-and-drop Java 2 JFC/Swing devel-
opment, an automatic database Application
Generator and scalable database tools with JDBC connectivity.

Borland JBuilder 3 Professional Comp/Version Upgrade . . $26499

Borland JBuilder 3 Professional New User $54499

Borland JBuilder 3 Standard $8499

SYMANTEC
VisualCafé Professional Edition

The award-winning, intuitive environment provides
the utilities, tools and wizards for increased pro-
ductivity like easy to use Interaction and Jav-
aBeans Wizards and Editing. Support for the latest
technology such as JavaBeans, servlets and
JFC/Swing keeps advanced technology within
your grasp. The integrated high performance
compiler and debugger provides robust and fast
tools for development while advanced features such
as visual support for interaction and JavaBeans development and editing
make complex development tasks extremely easy. .

VisualCafé Professional Edition $25899

VisualCafé Professional Edition (upgrade) $13299

GALILEO DEVELOPMENT SYSTEMS
Intr@Vision Foundation

Intr@Vision Foundation helps bring ColdFusion development to the next
level. It provides an out-of-the-box application security architecture for
handling your most complex
intranet and extranet needs.
Instead of spending 30% of your
development time adding security
to every application you build, it
gives you a proven solution with a
single line of code. Intr@Vision
Foundation allows your developers
to focus on building business
solutions, not infrastructure.

Intr@Vision Foundation $349999

ORACLE
JDeveloper Suite Personal Edition

Oracle JDeveloper Suite 2.0 provides a complete Java development
environment for developing and deploying applications ranging from
Java and HTML clients to server-based business components for the
Internet computing platform. JDeveloper 2.0 supports application devel-
opment based on industry-standard Enterprise JavaBeans (EJB) and
CORBA component models. Using intuitive and easy to use wizards, the
product provides full support for a rich set of Java standards -- servlet,
JDBC, SQLJ, InfoBus, and JFC/Swing. JDeveloper 2.0 comes with a
servlet engine that allows servlets to be developed and tested within
JDeveloper.

JDeveloper Suite Personal Edition. $11999

ALIVE.COM
Alive e-Show 1.1

Alive e-Show is an easy, cost effective desktop application that allows
non-technical PC users to create and publish streaming media e-shows
to the Web. Using Alive e-Show, employees can create new content,
integrate existing media, and publish it to the Web with a single click.
It's a great way to integrate slides, digital photography, animation, syn-
chronize audio and video, add hyperlinks, and supplement with closed
captions. Create e-shows quickly and easily. You create slides in outline
mode, record audio and video, and format the e-show using predefined
templates with slide styles and placeholders for closed captions too.
Allaire HomeSite® is included free, further simplifying any extra cus-
tomization you may need using this HTML editor.

Alive e-Show 1.1 . $55899

IBM
VisualAge for Java 2.0

With IBM's award-winning Java development environ-
ment, VisualAge for Java, you can build Web-enabled
enterprise applications. It’s a key element of the IBM e-busi-
ness Application Framework. VisualAge leads the industry with
proven support for building and testing Java applets, and Enterprise Jav-
aBean components and servlets. It’s the only Java development environ-
ment that supports the development and management of Java programs
that can scale from Windows NT to OS/390 application servers.

VisualAge for Java, Enterprise. $2,49899

VisualAge for Java, Enterprise Upgrade. $1,25899

VisualAge for Java, Pro Edition $8299

VisualAge for Java, Pro Edition Competitive Upgrade $2599

A technique for attaining maintainable code

WRITTEN BY
BRIAN FARN

Hungarian Notation with Java

50 SEPTEMBER 1999

The maintainability of software is an
increasingly important issue. As indus-
try demand for programmers’ skills
increases, so does their turnover rate
within a company, thus diminishing the
likelihood of the original programmer’s
being available when a problem arises
or when the product needs to be
enhanced. Also, a programmer who
produces volumes of code may need
some time to refamiliarize him- or her-
self with code that was written only a
month earlier, perhaps, but hundreds of
lines ago.

Programmers exposed to code that
has a style different from their own may
institute parts of the new style into their
own code if there’s an obvious advan-
tage. Most programmers restyle inherit-
ed code to their own conventions. New
programmers should thus be exposed to
good coding style and its advantages
before any code is written.

Hungarian Notation
One useful coding technique benefit-

ing both code readability and writability
– and hence maintainability – is Hun-
garian Notation. This technique is suit-
able for C/C++ programs that make use
of pointers. It’s also applicable to Java
programs. Essentially, Hungarian Nota-
tion is a naming convention that allows
a programmer to determine the type of
variable or constant just by looking at its
name. The letter “i”, for example, can be
used to denote an “int”. By prefixing an
“int” variable named “count” with an “i”
as in “iCount”, a programmer can tell by
looking at the variable name that the
variable is of type “int”.

As an example, look at the following
code segment:

float x = 0;
int y = 0;

x = y;

Looking only at the statement “x = y”,
someone attempting to understand this
code might assume that both variables
are of the same type. A good guess would
be that x and y are coordinate variables
of type “int”. However, we don’t know if x
and y are objects, numbers or characters.
This is especially true if the declarations
for x and y are not physically close to the
assignment statement. You’d need to
search through the code looking for the
declarations. If the original programmer
had used Hungarian Notation, the state-
ments would look like this:

float fX = 0;
int iY = 0;

fX = iY;

A person reading just the statement
“fX = iY” can deduce that an “int” is
being assigned to a “float” and may sus-
pect that the code is a little out of the
ordinary. Now look at these statements:

int iX = 0;
float fY = 0;

iX = fY;

From reading just the statement “iX =
fY”, a person can now deduce that a float
is being assigned to an integer and be
very concerned. Because of a type mis-
match this program won’t compile suc-
cessfully.

As a side benefit, Hungarian Notation
allows the original programmer to rec-
ognize that an explicit cast is required in
an assignment statement while the code
is being written. A programmer writing
the above statement would notice that
“iX” and “fY” were of different types and
would insert a cast “(int)” before enter-
ing the right side of the assignment, as
in “iX = (int)fY”, or might change “iX” to
a float variable, “fX”.

This is the writability aspect of using
Hungarian Notation, in which errors are
detected and removed as the code is
written. Discovering errors earlier in the
development cycle is a natural benefit.

Reuse of Variable Names
Hungarian Notation also allows vari-

able names to be reused when only the
notation part of the name is different.
Let’s take a look at a slightly more com-
plex example, shown in Listing 1. In this
class the constructor is given a file name
and a “boolean.” The file name is the
name of a file and the boolean is used to
tell the constructor whether the file
name should be used.

In this example an underscore char-
acter prefix distinguishes the instance
variables from the local variables and
function arguments. Also, the letter “b”
is used as the notation prefix for boolean
type variables, as in “_bNameIsValid”.
The variable name “strFilename” is used
for both the input argument and the
instance variable with the exception of
the underscore prefix in the instance
variable. If you just see the statements:

_strFilename = strFilename;
_bNameIsValid = true;

you can tell immediately which vari-
ables are instance variables, booleans or
strings, and – if the original programmer
used sensible variable names – the pur-
pose of each variable. Most important,
the assignment statements look correct
from a “type” point of view: a “String” is
assigned a “String,” and a “boolean” is
assigned a “boolean” constant.

The same variable name can also be
used for related variables. The Hungari-
an Notation prefix provides a distinction
between the data type of the variables.
For instance, the following two state
variables represent the string for a “Can-
cel” button and the Button object itself.

P R O G R A M M I N G T E C H N I Q U E S

C
reating software can be considered an art form, requiring
all of the characteristics associated with an artist, such as
creative style. Most artists, however, aren’t required to
modify their creations after the work has been purchased.
Software, on the other hand, needs to be maintained
either by its creator or by others if the creator has moved
to other responsibilities.

51SEPTEMBER 1999

Worldwide
Internet
www.wipc.net

52 SEPTEMBER 1999

String strCancel = new String();
// The ‘Cancel' string

Button btnCancel = new Button(
strCancel); // The cancel button

The following statements ask a user to
enter a user ID. A JLabel is used to iden-
tify a JTextField as the place to enter the
user ID. Both variables are named
“Userid” but are distinguished by their
particular data type notation.

JLabel labelUserid = new JLabel
("Enter your user id here:");

JTextField fieldUserid = new
JTextField();

Search and Replace
When writing new code or upgrading

existing code, notated variables are read-
ily modifiable. For instance, a text editor’s
replace utility can rename all instances of
a variable named “iW” to “iX” in one
operation. However, the same operation
can’t be used to rename variable “w” to
“x” without errors as all instances of the
letter “w” would be replaced whether or
not it represents a variable.

Variable Naming Conventions
The following is a suggested set of

rules for generating variable names and
is not meant to be a rigid set.
1. The prefix should be determined from

the datatype definition.
2. The prefix should be in lowercase only.
3. If the variable is declared inside a

class as instance data, the prefix
should be prefixed by an underscore
as in “_fVarName”.

4. All words in the variable name should
be capitalized to increase readability,
starting with the first letter after the
notation prefix.

5. Don’t overdo it. If you have a single
JPanel, name it “panel.”

6. For longer type names such as Font-
Metrics, use either an acronym such
as “fm” or a portion of the name such
as “metric.”

Here are some name prefix suggestions:
Primitive Types

TYPE NOTATION EXAMPLE
int i iIndex
short s sIndex
char c cLetter
boolean b bFound
byte y yData
float f fInches

Arrays
Append the letter “a” to the type

prefix:
byte[] yaNumbers;
int[] iaNumbers;
String[] straNames;

Object Types
Integer intIndex;
String strIndex;
StringBuffer strbIndex;
Point ptIndex;
Boolean boolFound;
Label labelTextString;
TextField fieldName;
Panel panelTextArea;
Frame frameWindow;
Window wndPrompt;
Popup popSelection;
MyOwnObjectType mootPoint;

Container Objects
Prefix a notation for the object type to

the notation for the variable type.

Vector vintIndices;
// Vector of Integer objects

Hashtable hashserAddresses;
// Hashtable of Serializable address

objects

Instance Variables
Add an underscore before the type

prefix and the variable name.

byte[] _yaNumbers;
int _iIndex;
boolean _bFound;
float _fInches;
String _strName;

As an alternative, another designation
such as “m_” can be added to the begin-
ning of a variable name to indicate an
instance (member) variable.

byte[] m_yaNumbers;
int m_iIndex;
boolean m_bFound;
float m_fInches;
String m_strName;

Class Variables
Prefix a “c_” to the name.

int c_iIndex;
double c_dValue;

A Life Example
Say tomorrow someone came to you

and said a fellow developer is unable to
complete a critical piece of code and
you’re the only person who has the skills
and knowledge to finish the job – and by
the way, you only have until the end of
the week to complete the task. Otherwise
the customer will cancel the contract
and take that six-figure sum elsewhere.

Before you panic, you decide to eval-
uate the situation by reading a sample of
the code. You need to find out whether
it looks reliable and whether you can
understand it well enough to modify it.
The answers to these questions, multi-

plied by a hundred, will give you a good
idea of how you’ll react when asked to
inherit the entire class library. You arbi-
trarily turn to the function shown in
Listing 2. What does it do?

This code is actually part of a text edi-
tor class that searches for a given string
with optional case sensitivity within a
vector of string buffers beginning at an x
and y coordinate. The “result” returned
is the point coordinate of the found text,
y being the row and x being the column,
or (-1, -1) if the text string isn’t found.
From this code we can deduce several
things:
1. The original programmer was kind

enough to use understandable vari-
ables, not just “s”or “zx”.

2. The variables “numberOfLines,”
“lines” and “cursor” aren’t declared in
the function so they’re probably
instance or class variables, but we’re
not really sure and we’ll have to hunt
for them.

3. The author may have had difficulty
with variable naming since there are
similarly named variables “line,”
“lines” and “line1”.

4. The variable “lines” is probably a
“Vector” since on line 25 we see a
“lines.elementAt()” function call.
Then again, it could be a “DefaultList-
Model”.

5. The variable “cursor” is probably a
“Point” since on lines 8 and 9 we see
“cursor.x” and “cursor.y”. However, it
could also be an “Event” object or, less
likely, a “Rectangle” object.

6. The variable “numberOfLines” is
probably an “int” since it’s being
assigned to another “int” on line 23.

Looking at the individual statements
from line 25 to line 29, it’s difficult to
determine whether the type assign-
ments are correct and the method calls
against the variables are appropriate.
Could this be the real source of the term
fuzzy logic?

Now compare the code in Listing 2 to
the same code in Listing 3, which has
been written using Hungarian Notation.

Several things are worth noticing
here:
1. The “cases” variable has been

replaced with “bCase”, which clearly
defines the variable as a “boolean”
intended to mean case sensitivity.
Since “case” is a keyword, the original
author couldn’t use it as a variable
name, which is probably why the vari-
able was originally named “cases”.

2. The variables “_iNumberOfLines”,
“_vstrbLines” and “_ptCursor” are
clearly defined as instance variables
of type “int”, “Vector” and “Point”,
respectively.

P R O G R A M M I N G T E C H N I Q U E S

53SEPTEMBER 1999

Meta
Mata

www.metamata.com

3. The variables named “line”, “lines” and
“line1” have been replaced by “strb-
Line”, “vstrbLines” and “strLine”, signi-
fying a “StringBuffer”, a “Vector” of
StringBuffers and a “String”. The same
root name “Lines” has been reused for
all three variables, which eliminates
the extra step of having to think up dif-
ferent but similar variable names that
represent the storage of a text string.

Each statement from line 25 to line 29 can
now be examined individually, out of con-
text, to determine whether each line’s syntax
is correct. For example, let’s visit line 25.

25 strbLine = (StringBuffer)_vstr-
bLines.elementAt(i);

Here’s what we can deduce:
1. The function “elementAt()” is correctly

called against the object “_vstrbLines”
since the “v” indicates a “Vector”.

2. The argument type to the function
“elementAt()” is correct since the vari-
able “i” is an “int”.

3. The “(StringBuffer)” cast against
“_vstrbLines.elementAt(i)” is correct
since the “Vector” holds objects of
type “StringBuffer” as indicated by the
“strb” in “_vstrbLines”.

4. The left side of the assignment state-
ment is also correct since the result of
the cast is being assigned to a “String-
Buffer” as indicated by the “strb” in
“strbLine”.

The statement is clear and easier to
read because it contains more informa-
tion than the original. More important,
it’s easier to write because as a develop-
er who uses Hungarian Notation consis-
tently, you can tell the statement is cor-
rect as you write it.

Summary
Differences in artistic coding style can

vary greatly among programmers. The
personal aspects of coding style are asso-
ciated with pride of ownership. However,

a lack of standards can indirectly pro-
duce code that has unknown reliability
characteristics and is hard to maintain.
The result can be unplanned work of
unknown duration, which includes tasks
ranging from documenting to rewriting.
It’s financially beneficial to use accepted
coding techniques, such as Hungarian
Notation, consistently. This will provide
long-term time savings. Its use can result
in code that is more readable, writable,
understandable and thus more main-
tainable, transferable and reliable. Think
about this the next time you inherit
someone else’s code or would like to pass
on some of your own code to that person
who’s looking over your shoulder.

AUTHOR BIO
Brian Farn researches

and develops Java
software at IBM and is

currently associated with
the IBM VisualAge for
Java team at the IBM

Software Solutions Toronto
Laboratory. He is a

graduate of the University
of Western Ontario with

degrees in physics and
electrical engineering. farn@ca.ibm.com

54 SEPTEMBER 1999

P R O G R A M M I N G T E C H N I Q U E S

public class Sample
{

String _strFilename = null;
boolean _bNameIsValid = false;

public Sample(String strFilename,
boolean bUseFilename)

{
// Store the filename if it is

valid, and if told to
//----------------------------------

if(bUseFilename == true && str-

Filename != null)
{

if(strFilename.length() > 0)
{

_strFilename = strFilename;
_bNameIsValid = true;

}
}

}
}

1 public Point find(String find,
boolean cases)

2 {
3 Point result = new Point(-1,-1);
4 StringBuffer line = null;
5 String needle = null;
6 String hay = null;
7 int index = 0;
8 int x = cursor.x;
9 int y = cursor.y;
10
11 needle = cases == false ?
12 find.toUpperCase() : find;
13
14 line = (StringBuffer)lines.ele-

mentAt(y);

15
16 if(x >= line.length() - 1)
17 {
18 x = 0;
19 ++y;
20 if(y >= numberOfLines) return

result;
21 }
22
23 for(int i=y; i<numberOfLines;

++i)
24 {
25 line = (StringBuffer)lines.ele

mentAt(i);
26 String line1 = line.toString();
27 hay = cases == false ?
28 line1.toUpperCase() : line1;
29 index = hay.indexOf(needle, x);
30
31 if(index != -1)
32 {
33 result.x = index;
34 result.y = i;
35 break;
36 }
37
38 else x = 0;
39 }
40
41 return result;
42 }

1 public Point find(String strFind,
boolean bCase)

2 {
3 Point ptResult = new Point(-1,-1);
4 StringBuffer strbLine = null;
5 String strNeedle = null;
6 String strHay = null;
7 int iIndex = 0;
8 int iX = _ptCursor.x;

9 int iY = _ptCursor.y;
10
11 strNeedle = bCase == false ?
12 strFind.toUpperCase() : strFind;
13
14 strbLine = (StringBuffer)_vstr

bLines.elementAt(iY);
15
16 if(iX >= strbLine.length() - 1)
17 {
18 iX = 0;
19 ++iY;
20 if(iY >= _iNumberOfLines) return

ptResult;
21 }
22
23 for(int i=iY; i<_iNumberOfLines; ++i)
24 {
25 strbLine = (StringBuffer)_vstr

bLines.elementAt(i);
26 String strLine = strbLine.toString();
27 strHay = bCase == false ?
28 strLine.toUpperCase() : strLine;
29 iIndex = strHay.indexOf(strNeedle, iX);
30
31 if(iIndex != -1)
32 {
33 ptResult.x = iIndex;
34 ptResult.y = i;
35 break;
36 }
37
38 else iX = 0;
39 }
40
41 return ptResult;
42 }

Listing 3

Listing 2

Listing 1

Code listings for this article can also be located at
www.JavaDevelopersJournal.com

▼▼▼▼ CODE LISTING ▼▼▼▼

BENEFITS OF USING HUNGARIAN NOTATION
Readability: Notation indicates variable types, and scope. Assignment statements can be verified

to be correct without the need to hunt for variable declarations.
Variables can be determined to be instance variables by looking at the variable name.

Writability: Coding errors are discovered sooner. Programmer understands that the variable type
and scope is correct while writing it.
Required casting is easily identified.
Variable name roots can be reused.

Maintainability: Code is understood more quickly by both the original programmer, and future
programmers.

55SEPTEMBER 1999

9 Net Ave
www.9netave.net

Cerebellum Software Inc. recently
announced the latest release of their
innovative data access middleware and
query application development envi-
ronment – Cerebellum 1.3, which
replaces the tedium of coding SQL
queries with a drag-and-drop visual
programming approach. Using Cere-
bellum, queries are saved as agents,
which are units of compiled Java code
that communicate with data sources in
their native tongue. These agents are
managed by servers called agencies that
mediate between the workstations that
run the query–client applications. This
middleware approach provides a uni-
fied way to access, integrate and man-
age data from a variety of databases and
data sources at different physical loca-
tions. Cerebellum is based on Java 2
Enterprise Edition technology and
incorporates features from CORBA.

Installation
I tested Cerebellum in a single worksta-

tion environment on a mid-range Pen-
tium II-266 workstation with 128 MB RAM
and running Windows NT 4.0 SP3. Full
installation of Cerebellum with documen-
tation and examples required 30 MB of
disk, not counting the necessary JDK 1.2.2
and database packages. (I used MS Access
and the shareware version of MySql.) Cere-
bellum runs on any platform supporting
Java 2 with installation instructions provided
for Windows and UNIX systems.
Cerebellum is designed from the start to run

in a complex business, corporate or enter-
prise network environment. The major com-

ponents – NameServer, Agency and Client –
can run on the same or different machines. The

terminology used by Cerebellum is a little con-

fusing initially. The NameServer (different from
a Domain Name Server) provides the central
repository for information linking the objects in
a Cerebellum system. An agency runs the agents
that translate to the actual data sources: either
databases or external applications.

The standalone installation script simplifies
configuring Cerebellum for use on a single
machine, which is typical of a smaller business
setting. The advanced configuration provides
flexibility in placing the NameServer and Agen-
cies on different workstations to support large
enterprise solutions. I installed my standalone
single workstation configuration in about 10
minutes. Complex configurations involving
multiple databases and servers can take sever-
al hours to plan and install. I recommend that
a new user first experiment with the stand-
alone environment and prototype a few
queries before proceeding to plan and install a
full enterprise configuration.

The value of a data access middleware prod-
uct is its ability to work with many data
sources. Cerebellum supports relational data-
base products from Oracle, Sybase, Informix
and Microsoft, and the shareware MySql data-
base. A JDBC–ODBC bridge connects Cerebel-
lum to any database that has an ODBC driver.

Cerebellum supports interaction with appli-
cations running on IBM’s mainframe CICS and
imports information stored as ordinary files.
Support is planned in future versions for access
to data from SAP applications, object database
management systems, Enterprise JavaBeans
and LDAP directories. Because of Cerebellum’s
data-independent architecture, existing Cere-
bellum queries can be modified easily to use
these new data sources.

Creating a Query
Before we get to build our queries, we need

to perform some administrative functions

An innovative
middleware
and development
tool for accessing
disparate databases

Cerebellum 1.3
by Cerebellum

Software

jmathis@ais.net

AUTHOR BIO
Jim Mathis is a freelance Java and JavaScript consultant by

night and a communications system architect by day. He has
been active in the Internet community from the very beginning
and wrote one of the first implementations of TCP/IP. A former
Apple employee, Jim concentrates on Macintosh as a platform.

WRITTEN BY JIM MATHIS

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

56 SEPTEMBER 1999

Cerebellum 1.3: Cerebellum Software Inc.
Web: www.cerebellumsoft.com

Phone: 1-888 862-9898

Requirements:
Java 2 (Windows 95/98,Window NT, Solaris for

SPARC and x86), 32 MB RAM, 10–30 MB disk

Pricing:
$995 for a single developer’s license; runtime

license varies depending on the number of
servers and concurrent users.

Enterprise packages start at $40,000.

FIGURE 1: Administrator tool

57SEPTEMBER 1999

HostPro
www.hostpro.net

using the Administrator tool (see Figure 1). Cerebellum’s inte-
grated data access approach is based on a common virtual
data model. A binding plan specifies how columns in the vir-
tual data model (the virtual source) map to specific columns
in specific databases (physical sources). This binding plan
deals with the fact that the same data columns may be called
differently in different databases. We must identify data
that’s semantically the same even though labeled differently
(e.g., “Full Name” and “Employee Name”), and different even
though labeled the same (e.g., “Name” of product and
“Name” of a contractor). Once the binding plan has been
created, it’s reused in future queries. The Administrator tool
also provides functions to organize users, groups and pro-
jects, and to assign access privileges.

Once the setup functions are complete, you’re ready to create
queries using the Designer user interface tool. Query applications
are developed, without writing any SQL code, by dragging and
dropping a combination of 12 “glyphs,” the basic units of Cerebel-
lum’s graphical query language, onto a worksheet or canvas. Each
glyph represents a predesigned code fragment that performs a spe-
cific action (see Figure 2). You connect glyphs together with arrows
to represent the flow of data through a query. A query can be as
simple as a single glyph that retrieves data from a particular source,
or it can involve multiple sources, joins, manipulations and trans-
actions. Different glyphs do different sorts of work. Some serve as
sources of data; others extract data; still others manipulate data,
delete data from data sources or write data to data sources. The 12
glyphs are source, select, filter, join, expression, aggregate, sort, set
operation, insert, update, delete and stored procedure. While Cere-
bellum hides the differences in SQL dialects across different data-
base vendors, some basic knowledge of SQL and database query
techniques is definitely useful to make the most effective use of
Cerebellum.

When complete, the query is stored, ready to use as a standalone
query application, or it can generate an agent to be called from a
Web page or used as a component of another application. Cerebel-
lum 1.3 features three APIs for developers: C++/CORBA, JDBC and
ActiveX. Cerebellum provides a set of Java libraries that allows Java
programs access to query creation and execution features.

Conclusion
I’ve touched on just a few of the very powerful features provided

by Cerebellum. One limitation is the lack of integration with con-
figuration and version control systems, often standard in enterprise
settings. Cerebellum is most effective in situations that require inte-
gration of data from more than two databases. The greater the
number of different databases or data servers, the more Cerebellum
will simplify your work and improve your productivity.

58 SEPTEMBER 1999

FIGURE 2: Creating a query in the Designer tool

Instantiations
www.instantiations.com

59SEPTEMBER 1999

Step1
www.step1.com

WRITTEN BY
JASON WESTRA

XML DTD for EJB Deployment Descriptors

E J B H O M E

60 SEPTEMBER 1999

In the spirit of JDJ’s focus on XML this
month, I’ll cover some important pieces
of the newly released XML DTD for
deployment descriptors in EJB specifica-
tion 1.1 (section 16.6). As this is being
written I have yet to find a production EJB
server that supports the DTD (if you know
of one, please let me know!); however, I’ll
include a “best shot” example descriptor
using the DTD so you get a feel for the for-
mat of its metadata. The example is based
on the Intergalactic Ticket System’s
TicketEntityBean from September’s EJB
Home column (JDJ Vol. 4, issue 8). For
reference see the online source code at
the JDJ Web site.

A Look Inside the EJB’s XML DTD
A deployment descriptor contains

two kinds of metadata (data about data)
for an enterprise bean:
• Structural information
• Application assembly information

Structural information describes spe-

cific characteristics of an enterprise
bean such as whether it is an entity or
session bean, and any external depen-
dencies it might have. This information
must be included in an ejb-jar file by its
producer. Structural information about
an enterprise bean is entered by the
bean provider, and it’s advisable not to
modify this information during ejb-jar
assembly or deployment. Table 1 lists
common structural information about
an enterprise bean that you might
include in a deployment descriptor.

Application assembly information is
the responsibility of the application
assembler. It describes how an enter-
prise bean in an ejb-jar file is assembled
into a coarse-grained deployment unit.
This information isn’t mandatory, and it
may be modified at deployment time.
However, be aware that an enterprise
bean’s behavior may be affected by these
changes. Table 2 lists common applica-
tion assembly information you might
encounter in a deployment descriptor.

The EJB specification describes the
responsibilities of roles during the life
cycle of an enterprise bean’s develop-
ment and deployment. The roles of
bean provider and application assem-
bler are separate, and they are assigned
different responsibilities regarding the
creation/modification of a deployment
descriptor. There will be overlap in the
responsibilities of each role, however,
resulting in an application assembler’s
possibly modifying structural informa-
tion about an enterprise bean. I played
each role in creating the example
descriptor.

TicketEntityBean XML Deployment Descriptor
The EJB XML DTD (enough with the

acronyms!) defines how to describe both
session and entity beans. Some element
tags, like env-entry – a description of a
bean environment property – pertain to
both bean types. Others are specifically
for session or entity beans only. The
TicketEntityBean XML descriptor exam-
ple clarifies common entity bean ele-
ments for you. Listing 1 contains the
complete source code of this XML
descriptor.

As indicated earlier, the DTD contains
structural information about an enter-
prise bean and may contain assembly
information as well. I’ll begin analyzing
the structural information about the
TicketEntityBean deployment descrip-
tor and finish with the assembly infor-
mation.

First, notice the top line of the ejb-
jar descriptor in the TicketEntityBean
descriptor. A well-formed, valid deploy-
ment descriptor must refer to the DTD
with the statement:

<!DOCTYPE ejb-jar PUBLIC "-//Sun
<Microsystems Inc.//DTD Enterprise
JavaBeans 1.1//EN">

T
o those of you familiar with Enterprise JavaBeans (EJB), deployment descriptors are nothing new.
Essentially, a deployment descriptor’s purpose is to collect declarative information that can be mod-
ified during deployment of an enterprise bean. Deployment descriptors are a key element in the com-
ponent-based development capabilities of EJB.They allow users to modify, link and deploy EJB in a
graphical environment rather than having to perform low-level code changes to reuse a component.
The latest public draft of EJB specification 1.1 includes sections on the XML DTD for deployment
descriptors, an important step toward enterprise bean portability between EJB servers.

Sun moves toward a goal of interoperability for enterprise beans among EJB vendor products

TABLE 1: Common structural information

XML Element Description/Value(s)
ejb-name Logical name for enterprise bean
ejb-class Fully qualified class name of the bean
home Fully qualified class name of the bean’s home

interface
remote Fully qualified class name of the bean’s remote

interface
entity, or session Element for entity or session bean
session-type Stateless or stateful
transaction-type Container or bean
trans-attribute How container manages transaction (i.e.,

Required, Mandatory, RequiresNew, etc.)
persistence-type Container or bean, for entity bean only
prim-key-class Fully qualified class name of primary key.

Required only for bean-managed entities
cmp-field Container-managed field, required if

container-managed entity
env-entry Environment entries, optional

61SEPTEMBER 1999

Sun Microsystems has plans to deliv-
er an ejb-jar file verifier that will check
for malformed XML as described in EJB
specification 1.1, section 16.6. A verifier
will provide bean providers and applica-
tion assemblers the ability to validate
their work, ensuring correct DTD
semantics are upheld.

Next, I continue the XML descriptor
with the ejb-jar element.

<ejb-jar>…</ejb-jar>

This element is the root of an EJB
deployment descriptor, which may con-
tain multiple enterprise beans. This
month’s example contains only one
enterprise bean. The ejb-jar element
may contain optional descriptions of
the ejb-jar, its icon files, display name
and an assembly-descriptor section, but
it must include at least one enterprise
bean element.

The enterprise bean element con-
tains one or more declared enterprise
beans: session or entity. The XML
descriptor will not be valid if this ele-
ment is empty.

<enterprise-beans>…</enterprise-
beans>

Within this section I enter the struc-
tural information about my TicketEnti-
tyBean.

TicketEntityBean’s Structural Information
The entity element in my example

contains the structural information that
is the bean provider’s responsibility to
enter.

<entity>…</entity>

The entity element has mandatory
and optional entries to allow the bean
provider to add detail to the bean as
needed.

Mandatory Entity Elements
Mandatory elements are the ejb-

name, home, remote, ejb-class, persis-
tence-type, prim-key-class and reen-
trant fields.

For all but the ejb-name element, I
have simply copied the values from my
previous deployment descriptor file
from the September column into these
elements as necessary. Thus you can see
that the example’s home element con-
tains the fully qualified name of the enti-
ty bean’s home interface class. Similarly,
the remote and ejb-class hold the fully
qualified class names of the remote and
entity bean, respectively.

<ejb-name>TicketEntityBean</ejb-name>
<home>jdj.ticketing.containerman-
aged.TicketEntityHome</home>
<remote>jdj.ticketing.containerman-
aged.TicketEntity</remote>
<ejb-class> jdj.ticketing.container-
managed.TicketEntityBean </ejb-class>

Note: ejb-name is simply a logical
name for the enterprise bean. It is not
the JNDI that will be assigned by the
deployer at a later time. Also, ejb-name
must be unique for a given ejb-jar file.

Because TicketEntityBean is container-
managed, my descriptor’s persistence-
type is “Container,” and like the home and
remote elements, I have entered the
prim-key-class in fully qualified form.

<persistence-type>Container</persis-
tence-type>
<prim-key-class>jdj.ticketing.con-
tainermanaged.TicketEntityPK</prim-
key-class>

The last mandatory entry in the entity
element is whether or not the bean is
reentrant. I have listed my TicketEntity-
Bean as False.

<reentrant>False</reentrant>

Optional Entity Elements
The entity element can optionally

include a description, display name and
icon files. Additional optional fields may
be contingent on factors such as
whether the bean is container-managed
or bean-managed. These include cmp-
field (container-manager field), prim-
key-field, env-entry (a bean environ-
ment property), ejb-ref (references to

other ejbs in the ejb-jar file), security-
role-ref and resource-ref (reference to
external resources). Because the Ticket-
EntityBean is container-managed, I’ve
included some of these elements in my
descriptor.

This is an example of an optional envi-
ronment property where the entity bean
has declared an idleTimeoutSeconds
environment property with a value of 5.

<env_entry>
<env_entry-name>idleTimeoutSec-
onds</env_entry-name>
<env_entry-type>String</env_entry-
type>
<env_entry-value>5</env_entry-value>
</env_entry>
more env-entries possible…

Following is an example of a few of
the container-managed fields declared
for the TicketEntityBean:

<cmp-field><field-
name>arrivalCity</field-name></cmp-
field>
<cmp-field><field-
name>departDt</field-name></cmp-
field>
more cmp-fields possible…

Application Assembly Information
Table 2 describes numerous elements

that an application assembler can
include in the descriptor. All are option-
al; thus the assembly descriptor may be
left out of the ejb-jar file.

The assembly-descriptor element –

<assembly-descriptor>…</assembly-
descriptor>

– can optionally contain information
about security roles, method permis-
sions and an enterprise bean’s transac-
tion semantics with its container. I have
opted to have no role-based security on
my TicketEntityBean, nor any special
method permissions based on role.
However, another ticket agency reusing
this entity bean may decide to place a
security restriction on the bean, allow-
ing only TicketAgent roles to access it. In
this case an entry would be made by the
application assembler to include the
security role element:

<security-role>…</security-role>

Likewise, they would want to include
which methods are restricted to this new
security role in the form of the following
tag:

<method-permissions>…</method-permis-
sions>

TABLE 2: Common application assembly information

XML Element Description
assembly-descriptor Root element for application assembly

information
security-role Role name value for

EJBObject.isCallerInRole(String roleName)
method-permission Defines and binds permissions to access

methods to security roles
container-transaction Used to assign container-transaction elements

to container-managed beans

I don’t have security information to
worry about; however, I do want to
describe how my entity bean behaves
within the context of a transaction. To
do so I have to include an element,
container-transaction. The full assem-
bly-descriptor element is listed below.

<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>TicketEntityBean</ejb-

name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-

attribute>
</container-transaction>
</assembly-descriptor>

In this example I list the entity bean in
question (i.e., ejb-name), which meth-
ods are managed by the container (i.e.,
method-name) and exactly how they are
managed (i.e., trans-attribute). For my
purposes I am dealing with the TicketEn-
tityBean, in which all methods signified
by an asterisk (*) are required (Required)
to operate within a transaction context.

The assembly-descriptor adds char-
acter to your enterprise beans that is not
or cannot be determined by the bean
provider. As security or transaction con-
text needs evolve, the assembly-descrip-
tor enhances EJB’s component-model
capabilities by allowing modification of
bean properties without code changes.

Summary
With the addition of a DTD for

deployment descriptors in the EJB spec-
ification 1.1, Sun Microsystems is step-
ping in the right direction toward an end
goal of interoperability for enterprise
beans among EJB vendors’ products. A
standard allowing EJB developers and
deployers to speak a common language
will only increase the efficiency of EJB
application development.

As with the first draft of any spec,
there are holes in the DTD that still
need to be filled. For example, there is
no description of how container-man-
aged fields map into their persistent
storage, and at the time of this writing
sections 16.4 and 16.5, deployer’s
responsibilities and container pro-
vider’s responsibilities, haven’t been
specified. When these sections are
detailed, an element to describe a
bean’s JNDI name, for instance, will
become self-evident (no pun intend-
ed!). In the next column I’ll cover other
portability issues beyond XML, with
regards to the EJB specification.

E J B H O M E

<!DOCTYPE ejb-jar PUBLIC "-//Sun <Microsystems Inc.//DTD
Enterprise JavaBeans 1.1//EN">
<ejb-jar>
<description>
This ejb-jar file contains the assembled enterprise bean(s)
that make up the
Intergalactic Ticket System.
</description>

<enterprise-beans>
<entity>
<description>

The TicketEntityBean represents a ticket entry made by a
ticket agent. It is container managed and currently assembled
to deploy against a JDBC backend.
</description>

<ejb-name>TicketEntityBean</ejb-name>
<home>jdj.ticketing.containermanaged.TicketEntityHome</home>
<remote>jdj.ticketing.containermanaged.TicketEntity</remote>
<ejb-class> jdj.ticketing.containermanaged.TicketEntityBean
</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>jdj.ticketing.containermanaged.TicketEnti-
tyPK</prim-key-class>
<reentrant>False</reentrant>

<env_entry>
<env_entry-name>maxBeansInFreePool</env_entry-name>
<env_entry-type>String</env_entry-type>
<env_entry-value>20</env_entry-value>
</env_entry>

<env_entry>
<env_entry-name>maxBeansInCache</env_entry-name>
<env_entry-type>String</env_entry-type>
<env_entry-value>1000</env_entry-value>
</env_entry>

<env_entry>
<env_entry-name>idleTimeoutSeconds</env_entry-name>
<env_entry-type>String</env_entry-type>
<env_entry-value>5</env_entry-value>
</env_entry>

<env_entry>
<env_entry-name>isModifiedMethodName</env_entry-name>
<env_entry-type>String</env_entry-type>
<env_entry-value>isModified</env_entry-value>
</env_entry>

<cmp-field><field-name>arrivalCity</field-name></cmp-field>
<cmp-field><field-name>departDt</field-name></cmp-field>
<cmp-field><field-name>price</field-name></cmp-field>
<cmp-field><field-name>flightNumber</field-name></cmp-field>
<cmp-field><field-name>arrivalDt</field-name></cmp-field>
<cmp-field><field-name>ticketNum</field-name></cmp-field>
<cmp-field><field-name>seatNumber</field-name></cmp-field>
<cmp-field><field-name>passengerNumber</field-name></cmp-
field>
<cmp-field><field-name>departCity</field-name></cmp-field>
</entity>

<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>TicketEntityBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>
</ejb-jar>

Listing 1: TicketEntityBean XML descriptor

Code listings for this article can also be located at
www.JavaDevelopersJournal.com

▼▼▼▼ CODE LISTING ▼▼▼▼

AUTHOR BIO
Jason Westra is a

managing partner with
Verge Technologies Group,
Inc., a Java consulting firm
specializing in Enterprise

JavaBeans solutions. jwestra@uswestmail.net

A standard
allowing EJB

developers and
deployers to speak

a common language
will only increase
the efficiency of
EJB application
development

‘‘

’’

62 SEPTEMBER 1999

63SEPTEMBER 1999

Protoview
www.protoview.com

XML and Java: Developing Web Applications
by H. Maruyama, K.Tamura and N. Uramoto
List Price: $39.95
386 pp
Addison-Wesley Pub. Co.; ISBN: 0201485435

Sometimes it’s all in the tim-
ing. I was writing an application
and looking for a reference for
creating XML definitions for a
virtual store’s transactional
objects. Specifically, I was look-
ing for a book that covered XML
parsing at the Java servlet level.
Now writing this wouldn’t be too
bad, but I share a trait with mil-
lions of software developers –
we’re all lazy. Most books I had
didn’t get into elaborate exam-
ples. I’d searched the Web and
though there were bits and
pieces of examples in disparate
Web sites, I didn’t find a single comprehensive source for my needs. Just
as I was getting ready to write my own code, a review copy of this book
showed up at my doorstep.

This is a great book. It gets straight to the point, doesn’t repeat a lot of
information available elsewhere and is packed with abundant code in
sufficient detail. The authors have an informal style that is very easy to
follow. Salient points are provided as bulleted lists, short and to the
point. The authors don’t waste time with long, tedious explanations of
the code, which is well commented and self-explanatory.

However, this is not a book for Java beginners. And though it briefly
describes some XML concepts, if you don’t know anything about XML or

64 SEPTEMBER 1999

XML Applications
by F. Boumphrey, O. Direnzo, J. Duckett et al.
List Price: $49.99
649 pp
Wrox Press Ltd.; ISBN: 1-861001-52-5

This past March I got involved
in writing a BizTalk interface to
one of our business engines using
XML. At that time I was familiar
with the tagging scheme, the con-
cept of DTDs and the different
parser implementations that sup-
ported DOM and SAX. However, I
hadn’t had the privilege of writing
an XML application. Like most
software engineers who want to
research a technology, I turned to
the Web. As expected, I found tons
of information about XML. So much so that it was overwhelming (DOM,
SAX, XSL, XQL, DTD, Parsers, XML/EDI, CSS, etc.). Like any good employ-
ee trying to meet a deadline, I started to go through the various sites and
absorb as much information as I could. Once I had achieved information
overload, a buddy of mine who enjoys buying books purchased XML
Applications. As much as I hate to reveal programming secrets, this book
helped me understand the DOM hierarchy and its interfaces.

Chapter 1 started by introducing the value of XML followed by a
description of what a well-formatted document looks like. Chapter 2 did
a good job explaining XML declarations, elements and attributes and

how they’re used. The book then went into a comprehensive explanation
about DTDs (document type declarations).

For me, the chapter that really made the book indispensable was 6,
which explained in detail the XML Document Object Model and the
DOM interface, a common API that allows the programmer to access the
XML document as a tree model. I found the illustrations in this chapter
to be invaluable. My only complaint about this chapter is that the exam-
ple code was written in JavaScript and IE5 XML ActiveX control. I would
have preferred Java examples that used the IBM or Sun Java parser.

As I continued reading, I noticed that the book didn’t discriminate
against languages. Chapter 11 provided a case study in which XML is
used as a common data schema between vendors’ Web sites. The case
study was implemented leveraging VBScript and C++.

I finally found the content I was looking for in Chapter 12, the Java and
XML chapter. This chapter provided a good, although somewhat elabo-
rate, example of how to use the DOM interface to parse a document in
Java. While this was a good chapter, I was disappointed to see that the
authors had chosen the Microsoft Java parser for their example. I ended
up using the IBM’s parser for my project because it had to run on multi-
ple platforms. There are other good chapters (7 and 8) that explain the
differences between HTML and XML, and how to display XML in a
browser.

In conclusion, this is a good book for software engineers who are
interested in the how and not so much the why of XML. My only real
question to the authors is, “Why this fixation with Microsoft products?”
I understand that Microsoft makes good products, but they only run on
Windows platforms. What about the rest of the world?

—BY ISRAEL HILERIO

israel_hilerio@i2.com

B O O K R E V I E W S

Career
Central

careercentral.com

65SEPTEMBER 1999

Fall
Internet

66 SEPTEMBER 1999

Java, this is definitely not the book to start with. The authors define the
audience right in the beginning by saying, “This book is not a primer or
reference on XML or Java.…We assume that you have at least a basic
understanding of both and some experience writing Java programs.”

That said, the book doesn’t jump into advanced XML applications
abruptly. Chapters 1 and 2 provide a fast-paced but decent introduction to
XML and its ability to provide standards for data formatting. If you’re
familiar with Java and some markup languages (even HTML), you should
be able to follow the chapters quite easily. In addition to the introduction,
Chapter 1 also provides a good analysis of the synergy between Java, XML
and the Web. Four application areas of XML are identified – document
markup, metacontent, databases and messaging. These comprise the later
chapters of the book. Chapter 2 covers XML parsing in just the right
amount of detail for experienced programmers. This includes discussion
on DOM and SAX interfaces. Since the authors are from IBM, the tool used
for parsing is IBM’s XML4J parser. In that sense this book is biased. How-
ever, the concepts should be applicable to other XML parsers for Java.

Chapters 3 and 4 get into more detail about XML documents. Chapter
3 discusses constructing XML documents, covering details on creating
them from scratch as well as building valid DOM trees. The authors pre-
sent a complete program for validating generation using DTDs. Readers
not interested in such a deep level of detail should proceed to Chapter 4.
Next, the authors provide techniques and examples for generating XML
documents from DOM trees. Chapter 4 dives into the manipulation of
DOM structures. The text is well broken out into method descriptions
with appropriate illustrations. The chapter ends with a complex exam-
ple, which develops an LMX processor for converting between XML doc-
uments. I didn’t go through the example in detail as I don’t have a current
use for this application, but the discussion preceding it seems to indicate
that the authors have done a great job in providing a sophisticated
example. I haven’t seen this level of detail in other XML texts.

Chapters 5–8 get more into enterprise-level programming with XML
and Java. Chapter 5 covers how Java servlets can be used in conjunction

with XML. A really good thing here is that the authors cover both the
HTTP GET as well as POST methods for invoking the servlet. For XML,
POST is more appropriate because of the length of the packet being
transported. Unfortunately, POST is also the tougher nut to crack. The
authors provide detailed explanations and corresponding code for using
both mechanisms in servlets. A large part of the chapter consists of
developing an XML-based Web document management system that
uses servlets as the server-side processors of XML documents. There is
well-commented code for serious developers trying to tie in pieces of the
client and server side of XML.

Basically, Chapters 5–8 provide coverage on the server and middleware
tiers of distributed computing with regard to XML. I haven’t seen similar
coverage in any other text. Chapter 6 covers JDBC and database access. A
brief primer on JDBC is offered in the beginning of the chapter, followed
by detailed descriptions of SQLX, a program that ties in the worlds of
RDBMS and XML. Again, there is code aplenty for us coding fanatics.

Chapter 7 goes over messaging and security. If you’ve made it this far,
you’ll be expecting a primer on messaging and related technologies. The
authors don’t disappoint. The first half of the chapter covers messaging
concepts, followed by a “PowerWarning” example that illustrates
XML/HTML-based messaging. Later sections of the chapter cover XML
message design and security using SSL.

The last chapter covers designing software components using XML
and JavaBeans in conjunction. Some “XML Beans” are developed, and
the chapter ends with a “Travel Planning Application” – a Web automa-
tion application using XML and JavaBeans. The Appendix describes
other XML parsers and the XML for Java API reference.

This is a great book for developers trying to grapple with the different
aspects of XML as they relate to distributed Java computing. I recom-
mend this highly for advanced developers.

—BY TIJA RAGAS

tija@sys-con.com

B O O K R E V I E W S

AvantSoft
www.advantsoft.com

78 AUGUST 1999

TM

Ja
va

Buye
rsG

uide.c
om

Ja
va

Buye
rsG

uide.c
om

JAVA
BUYER’S

GUIDEBUYER’S

GUIDE

• Applica
tion

Serv
ers

• Books

• Class L
ibraries

• Code P
rotec

tion (N
EW

)

• Components (
NEW

)

• Consultin
g Serv

ice
 (N

E

• Database
Tools

• Deve
lopment To

ols

• Ed
ucation and T

• Hardware
Prod

• ID
ES

• Modelin
g T

• Netw
or

• Other

• Profi

• Re

• S

JAVAS
P

E
C

IA
L

 I
S

S
U

E

presents

the most complete reference to
Java products and services

the Annual Print Edition of

Attention
Java vendors!
update your listings at

JavaBuyersGuide.com
for our next print edition.

EX
C
LU

SI

VE
EXCLUSIV

E

FREE

CD!
FREE
COLLECTORS

CD!
BONUS

• Application Servers
• Books
• Class Libraries
• Code Protection (NEW)
• Components (NEW)
• Consulting Service (NEW)
• Database Tools
• Development Tools
• Education and Training
• Hardware Products (NEW)
• IDES
• Modeling Tools
• Network Tools (NEW)
• Other Java Tools (NEW)
• Profilers (NEW)
• Reporting Tools (NEW)
• Sites (NEW)
• Team Development Tools (NEW)
• Testing Tools
• Web Tools

BUYER’S
GUIDEJAVABUYER’S
GUIDEJAVA

▲
▲

▲
▲

▲▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

JA
VA

de
ve

lo
per’s journal

JDJ
Readers’

CHOICE

 AWARD

World class

 AWARD

Subscribe to JDJ now
& receive Java Buyer’s Guide

FREE!

Subscribe to JDJ now
& receive Java Buyer’s Guide

FREE!

WRITTEN BY
KANG LU

XML:The Next Generation EDI?

How Do We Communicate?
I’d like to focus on the topic of human-

to-human communication. This is an
analogy similar to the one that Rosetta-
Net, an organization geared toward spec-
ifying the interfaces for electronic com-
merce, used in their overview. It’s a sce-
nario we’ve all experienced and can easi-
ly relate to when compared to a similar
machine-to-machine scenario. In Figure
1, when a person wants to talk to another
person, he or she needs to develop a
thought, usually containing some idea or
topic the recipient will understand. The
speaker must translate these thoughts
into spoken words. This isn’t a simple
task. The speaker must identify the
appropriate words from his or her vocab-
ulary and group them according to some
grammatical rules. The speaker then ver-
balizes a sentence or a phrase that pro-
duces a series of airwaves that is ulti-
mately received by the listener. The lis-
tener hears the sentence and, using the
same rules, processes it into a syntactic
structure of recognizable words, inter-
prets the semantic meaning and eventu-
ally duplicates the speaker’s thought.

We probably perform this simple
communication task a thousand times a
day. All of us take these simple acts of
speaking and listening for granted. What
we don’t consider is the standard infra-
structure in place that allows us to make
verbal communication. What are these
standards? The green boxes in Figure 1
represent an implied standard. If speak-
ers and listeners don’t have agreements
on all the green boxes, communication
will be impossible. For example, if the
speaker is addressing one topic and the
listener expects to hear a different one,
the listener won’t be able to put the
speaker’s sentences into context. I’m
sure all of us have heard the phrase
“What are you talking about?” Similarly,
if the participants have different sets of
vocabulary and grammar, the meaning
of the original thought will be lost.

The Role of XML
In the growing world of electronic

commerce, common standards are need-
ed, especially in an environment in which
machines talk to machines. Figure 2 illus-
trates where EDI and XML fit in the world
of standards. You can see that the role of
XML is smaller than that of EDI. Before
you protest, allow me to explain. XML is a
standard that governs how data is to be
represented. It has provisions for defining
data elements plus extending and cus-
tomizing data structures. The power of
XML is its flexibility to define an arbitrary
data structure for both machines and
people. A data structure defined in XML
can be validated and easily parsed by
using readily accessible, standard parsers.
Its standards are predominantly applied
to data schemas. What ASCII is to charac-
ter encoding, XML is to data structures. In
summary, XML gives you the power to

specify the vocabulary but it doesn’t
impose or attempt to standardize the
individual elements of the vocabulary.
XML isn’t a dictionary, only a means of
formulating one. Using the example of
human communication, you should be
able to see that XML considered as a stan-
dard is simply not enough for meaningful
communication. This is why, in Figure 2,
the XML covers only part, not all, of the
vocabulary section.

The Role of EDI
What is required is a standard that can

embody a business dictionary in the con-
text of business processes. This is where
EDI comes in. With its long history, EDI
provides common meaning to business
transactions through the use of standard
business documents. These documents –
purchase orders, invoices, etc. – represent
the contents of day-to-day business
transactions. The set of business docu-
ments encapsulates business events and
processes. Typically, a three-digit number
is used to represent the document type. In
the case of a purchase order, the number
850 is used. There are many standard
bodies associated with EDI. The common
ones are EDIFACT (EDI For Administra-
tion, Commerce and Transport), used pri-
marily in international circles, and ANSI
X.12, widely used in North America. EDI
embodies more than just data definition,
as it also dictates the transporting and
administering of the documents.

A traditional EDI player is probably
also a member of a Value Added Net-
work. A VAN is like a private Internet
hooking up businesses through
modems. In addition to the network ser-
vices, a VAN will also provide services
along the lines of guarantee receipt,
reporting, auditing and security. It’s not

68 SEPTEMBER 1999

X M L & E D I

X
ML has been touted to the point where you may think
it’s the greatest thing since sliced bread. As a technolo-
gy, it’s certainly achieved a level of respectable hype.
However, does XML have what it takes to solve the
problem of seamless business-to-business communica-
tion? To answer this question, I’d like to present XML
under the limelight of EDI (Electronic Data Inter-
change). Using human-to-human communication
requirements, I’d like to extrapolate those into business-
to-business communication requirements and show
that XML, by itself, solves only a portion of the problem
but can act as an enabler for solving the rest.

The vocabularies and dictionaries of electronic business communications

FIGURE 2: Relative roles of XML and EDI

THOUGHT

TOPIC

GRAMMAR

VOCABULARY XML

E
D

I

VOICE The medium (Internet/VAN)

How business documents are written

Business Documents

Business Processes:
• an order
• an inventory management
• purchasing
• planning

Business Event:
• an order
• an acknowledgment to a
 receipt of an order, etc.

FIGURE 1: Human-to-human communication

SPEAKER LISTENER

AI
R

W
AV

ES

THOUGHT

TOPIC

GRAMMAR

VOCABULARY

VOICE

69SEPTEMBER 1999

OMG
www.omg.org

70 SEPTEMBER 1999

cheap to obtain a membership in a VAN,
which is generally more expensive than
the Internet. In short, the VAN creates a
virtual business community by acting as
a hub for businesses to communicate
using the EDI document standards.

Figure 3 shows a typical EDI transac-
tion. A vendor creates an order docu-
ment by populating fields in the docu-
ment with information derived from its
back-office systems, typically some form
of ERP (Enterprise Resource Planning)
system. Integration is required to extract
the relevant values from this system. The
values are then stored in the appropriate
fields within the document via a piece of
EDI software known as a Translator. The
order document is sent along the VAN to
be received by the supplier. The supplier,
using a similar Translator, strips the rele-
vant information from the order docu-
ment and transfers it to its back-office
system. During this transaction the VAN
can provide various security and audit
controls; it can also provide an acknowl-
edgment to the vendor that the supplier
has received the order. The supplier
processes the order and in so doing
sends an invoice document back to the
vendor in a similar manner.

While the EDI documents provide a
rich platform for business communica-
tion across different industries, from
retail to government, they’re sometimes
viewed as being too rigid for certain busi-
nesses. Although the EDI documents pro-
vide optional capabilities, the documents
can’t be easily extended like XML. As busi-
ness processes change, the demand for
new fields arises. Users of EDI begin to
tweak the standards by placing informa-
tion where it doesn’t belong in the docu-
ments. Data that didn’t fit often ends up in
unused fields. The semantic meaning of
the fields then deteriorates, because now
it represents information other than its
original specification. This ad hoc solu-

tion works as long as all the trading part-
ners are aware of the tweaks.

The concept of EDI is a good one. How-
ever, its implementation of a rigid docu-
ment set sent over a proprietary network
infrastructure – and expensive translator
software for back-office integration – tends
to inhibit the participation of new players
in the world of electronic commerce. The
XML technology opens the door for com-
panies that didn’t have the opportunity to
participate in EDI in the past.

XML and Industry Standards
The XML community is offering a

more effective solution. First, the cover-
age area of the VAN is a far cry from the
coverage area provided by the Internet.
The Internet also lessens the need for a
proprietary network like VAN. Second,
publicly available XML parsers are mak-
ing it extremely easy to read and inte-
grate with XML documents. Although
this solves many technical issues of
communication, the major part of the
problem is still defining a set of standard
business definitions that would include
common grammar and vocabulary. It’s
worth noting that there’s an XML/EDI
Group trying to marry the flexibility of
the data definitions of XML with the
business language and practices of EDI.

Other major forces, such as Rosetta-
Net, CommerceNet and OAG (Open
Applications Group), are also trying to
leverage the extensibility nature of XML
to fill the grammar and vocabulary gap.
These are organizations with big players
that are undertaking the daunting task of
specifying the business dictionary using
XML. Within these organizations you’ll
find EDI standard bodies such as ANSI
ASC X.12 and UCC (Uniform Code Coun-
cil). There are also companies, such as
Ariba, that are defining cXML, a set of
XML schemas for procurement and cata-
log operations. New XML schemas are

being created every day, which creates a
new problem. Which definition should I
use? Which dialect should I speak?

To tackle part of this problem, organi-
zations such as Microsoft’s Biztalk.org
and OASIS’s XML.org are beginning to
take shape. Their purpose is to act as a
clearinghouse for XML documents by
soliciting business partners to collec-
tively create a vocabulary repository.
Different XML schemas are published in
these clearinghouses for others to con-
sume and use. They represent a hub for
the business community of business
dictionaries specified in XML.

The EDI experience has taught the
electronic-commerce community about
the need to customize and extend. An
order document in the auto industry will
be different from one in the electronic
industry. The health-care industry will
have business processes substantially
different from processes in the retail
industry. Each vertical industry will
demand its own set of business docu-
ments. A horizontal process, such as
order entry, will be different for each
industry, resulting in different business
documents to be transacted. The combi-
nation of the expressive power of XML
and the development of big organiza-
tions to produce common business dic-
tionaries is finally beginning to bridge
the gap of our communication stack.

Is This Enough?
In the age of the Internet, XML offers

an opportunity to rethink the implemen-
tation of EDI but it can’t replace it by
itself. The standard business dictionaries
stemming from standard organizations
are crucial to the success of business-to-
business communications. The extensi-
bility of XML will ease the traditional EDI
pain of being too rigid in definition. The
pace of competition is extreme and this
means businesses need to be as agile as
ever. This competitive environment
forces businesses to change and upgrade
their processes frequently. These
changes in processes may lead to
changes in messages. How well will XML,
along with the armies of standard bod-
ies, keep pace? Only time will tell.

References
BizTalk: www.biztalk.org
XML.org: www.xml.org
RosettaNet: www.rosettanet.org
CommerceNet: www.commerce.net
Open Applications Group:

www.openapplications.org
Ariba: www.ariba.com
Data Interchange Standards Associa-
tion (DISA): www.disa.org

X M L & E D I

AUTHOR BIO
Kang Lu, a software

development manager at
Ironside Technologies Inc.,

Markham, Ontario, is a
Sun Certified Java

programmer with 11
years of programming

experience. A graduate of
the University of Toronto

with a B.A.Sc degree,
Kang Lu is responsible for

the delivery of
e-commerce–based

architectures and
infrastructures at

Ironside. klu@ironside.com

FIGURE 3: Typical EDI flow

SUPPLIER

E
R

P

Integration

IM
PO

RT

EXPORT

Translator

Decoding

Encoding

VENDOR

E
R

P
Integration

IMPORT

EX
PO

RT
Translator

Decoding

VAN
(Network)

Decoding

Encoding

Only Java Developer’s Journal Readers are

100% Pure Java

The World’s Leading Java Resource

JDJ Java Report Java World JavaPro

Publications Regularly Read by
Java Professionals

In
de

pe
nd

en
t R

ea
de

x
Re

ad
er

 S
ur

ve
y

re
su

lts

18%

39%

3%

84%

www.JavaDevelopersJournal.com or call 914-735-0300

©1999 SYS-CON Publications, Inc. All rights reserved.
JDJ and Java Developer’s Journal are registered trademarks of SYS-CON Publications, Inc.
All other names are trademarks of their respective owners.

Before you advertise in a publication, please ask how many real
Java readers you’re actually reaching!

JDJ is the only publication whose readers are 100%
pure Java developers.

Your ad in Java Developer’s Journal reaches 100% Java
professionals who make decisions to purchase Java related
products and services, not over 40% Visual Basic programmers
who never asked to receive the publication you advertise in!

We built our circulation one subscriber at a time.

That’s one of our secrets why your ad works in JDJ.

Carmen Gonzalez
Vice President,
JDJ Advertising Sales

Help has arrived! I’ve have been using Robo-
HELP for about four years. I first bought it as a
special at a Powersoft trade show in 1995. The
price was right, it sounded like a cool product
and I didn’t know anything about creating help
files. I create help files, mostly as technical help
documents for the programs I write for my
clients, and needed something that was easy
to use. It looked like a good place to start. It
was, it turned out, a good place to stay.

When I was presented with the
opportunity to write this review, I was a bit
overwhelmed. This is a very broad product
with more features than I could write
about in the space I have. Over the past
four years the people at Blue Sky have
made continuous improvements in this
product. With WinHELP 2000 they con-
tinued this progression. With eHelp and
other seamless Internet links they seem
to be closing in on Ted Nelson’s Xanadu.

The Quick Tour
RoboHELP Office 2000 is a multifac-

eted tool that helps you build not only
classical Windows Help files for Win3.1,
95/98 and NT, but also HTML help,
JavaHelp and Printed documentation.
RoboHELP 2000 includes support for
the new JavaHelp 1.0 and an interesting
Web extension to help called eHelp.

JavaHelp
RoboHELP Office 2000 now supports

the creation of JavaHelp 1.0 files for use
in your Java projects. Sun Microsystems
recently released JavaHelp 1.0 as a plat-
form-independent Help format for Java-
based applications. As Sun evidently has
no intention of releasing an authoring
environment for creating this kind of
help, RoboHELP provides an easy devel-
opment path with the single-source
process – as long as you have the Java-
Help 1.0 and JDK 1.2.2. Once you’ve creat-
ed your help project, you can easily gen-
erate the JavaHelp with all the Java-based
Help features such as Table of Contents,
full-text search, dynamic index, naviga-
tion controls, file compilation, HTML con-
tent, hyperlinks and Java components.

WebHelp
WebHelp provides a cross-platform

solution for HTML-based help. It gener-
ates Help for Windows 2000, NT, Windows
98, 95 and 3.1, Macintosh and UNIX. It also
provides a Java applet for browsers that
don’t support Dynamic HTML.

eHelp
The merging of classic help and the

Web arrives with eHelp. Until now, a compa-
ny’s offering had to consist of static help files.

eHelp creates a seamless entrée into search
engines and gives you the ability to set up chat

rooms or FAQ areas for your users.

According to Blue Sky, “eHelp is a new Inter-
net Help portal technology that Blue Sky is
launching as part of RoboHELP Office 2000.
eHelp extends a standard Help system by com-
bining many of the Internet user-assistance
tools into a single Help portal that can be
accessed from within a standard application
Help system. eHelp includes advanced Web
search capabilities, and can also host separate
communities for each application that
employs eHelp. Each community will include a
continually growing Q&A knowledge base and
discussion groups, and allow real-time chat
with other users of the same product.” Blue Sky
will host the eHelp on its own set of servers as a
free service to users of RoboHELP. Contact Blue
Sky if you intend to use this feature.

Getting Started with RoboHELP
You can create a new help project using Robo-

HELP’s new project wizard. This wizard helps you
build basic standalone help projects, application
help with settings preset for many of the standard
application environments such as Visual C++,

Help...
on Steroids

RoboHELP
Office 2000

by Blue Sky Software

bmetzger@kevsys.com

AUTHOR BIO
Bernhard Metzger is a Powerbuilder CPD Professional and
president of KEV Systems, Inc., a consulting company in

Newton, Massachusetts. Bernie can be reached at
bmetzger@kevsys.com, or by voice at 800 376-5755.

WRITTEN BY BERNIE METZGER

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

RoboHELP Office 2000: Blue Sky Software
Web: www.blue-sky.com

e-mail: information@blue-sky.com
Phone: 800 459-2356

International: 1 858 459-6365

Requirements:
32 bit OS running Windows 95, 98 or NT4.0 or

later. Integrates with MS Word ,
supports Word 95, 97 or 2000

Pricing:
RoboHELP Office 2000 is scheduled to ship

this month at a list price of $899

72 SEPTEMBER 1999

FIGURE 1 The RoboHELP explorer lists all the
topics and components in your help project.

FIGURE 2 The Smart Index Wizard can auto-
matically generate a comprehensive index.

FIGURE 3 A WinHelp system created with
RoboHELP’s WinHelp 2000 interface.

Access, PowerBuilder, Delphi and Visual Basic, to
mention just a few. You can create help that pre-
sents itself in an Explorer pane and, if you have
your own custom templates, custom help.

Once you’ve created the project, creating basic
Windows help is easy. This is a very intuitive
product. I actually have a manual somewhere,
but I haven’t opened it in a very long time. After
you start up RoboHELP you have the RoboHELP
Explorer on the left side of your screen and Word
on the right (see Figure 1). To start, you create the
outline for your help document as a series of
books, and within them you create the topics you
wish to write about (this is the CNT file). When
you create a topic, RoboHELP adds the topic to
the opened Word document and you then type
the documentation. You can even generate a
complete index automatically using the Smart
Index Wizard (see Figure 2). When you finish, you
click on the “compile” icon and poof! Help has
arrived! While you can generate classic WinHelp
output, you can also create a Help file that dis-
plays the TOC, index, etc. on the left side (see Fig-
ure 3) with the help of a DLL from Blue Sky.

Topic Options
RoboHELP really shines when it comes to

the options available to you in the document
itself. You can create hypertext links of amazing
variety. First, you can create simple jumps to
other topics within the same or other help doc-
uments. You can also add topics to a list of
available “see also”s. Then, when you’re creat-
ing another related topic, you can reference
additional topics with a see-also button.

Buttons
RoboHELP provides four types of buttons you

can place within help topics. These four types –
authorable, mini, shortcut and graphical –
determine the appearance of the buttons in
your topic. What you can do with these buttons
is quite extensive. You can define the display
popups and jump to other topics within the
same document, other documents or HTML
pages. You can also provide a number of pro-
grammatic actions with the Macro button type.
This button type lets you define menu items,
keyboard shortcuts, execute programs, display
video, play sounds and many other actions

Multimedia
Sometimes a picture, especially a moving

one, is worth a thousand words. RoboHELP
comes with a “Software Video Camera” with
which you can capture both audio and video
software demonstrations that you can include
in your help files. You start your application
and the “camera” as you point and click and
type. The camera captures your actions and
voice in an AVI file. You can then include this
file in your help file for demonstrations.

PC HelpDesk
This feature combines database access to a

knowledge base through your help files. PC

HelpDesk packages your product knowledge
base into a customized HelpDesk that users can
access through a link from the help file.

Single-Source Output
One of the most powerful things RoboHELP

provides is single-source output for help files.
From one help project you can create output
for a number of target platforms. One of my
clients asked me if I could provide HTML help
for the document I was writing. This is one of
those requests that’s easy to do with RoboHELP
– and makes you look good! Once you’ve creat-
ed the help project and done your documenta-
tion, you can create:
• Help for Win 3.1
• Help for Win 95 and NT

• Microsoft HTML help (Win 98)
• WebHelp3
• JavaHelp 1.0
• Windows CE Help
• Netscape NetHelp 1
• Netscape NetHelp 2
• Printed Documentation

The Real Power
With RoboHELP Office 2000, the power of an

integrated world really becomes a possibility.
With this new version you can integrate HTML
into your help document. This means you can
display HTML documents in your help file
without exiting to a browser. You can jump
from HTML to a normal topic, and you can
jump to a Web page from your document.

73SEPTEMBER 1999

Specialized
Software

www.specializedsoftware.com

74 SEPTEMBER 1999

OASIS Introduces XML
Conformance Test Suite
(Boston, MA) – The Organization
for the Advancement of Struc-
tured Information Standards
(OASIS) announces the avail-
ability of the OASIS XML Con-
formance Test Suite – a set of
more than a thousand tests that
determine the ability of XML
parsers to handle test cases built
on the W3C recommendation.
The suite incorporates tests
developed by the OASIS techni-
cal committee with those con-
tributed by Sun Microsystems,
Fuji Xerox Information Systems
and James Clark.

The suite can be downloaded
from the OASIS Web site.
www.oasis-open.org/commit-
tees/xmltest/testsuite.htm

OASIS Opens Membership
to Individuals and XML
Industry Groups
(Boston, MA) – OASIS has
expanded access to its XML
interoperability technical work
by restructuring its membership
requirements. The nonprofit con-
sortium, previously open only to
companies that use or provide
products or services based on
structured information standards
such as XML, SGML and CGM,
added new membership cate-
gories for individuals and associ-
ate XML industry groups. Inter-
ested parties may apply for
membership online. www.oasis-
open.org

Appeals Court Orders
Reconsideration of Injunction
Against Microsoft
(San Francisco, CA) – A federal
appeals court ordered reconsid-
eration of a judge’s restrictions
against shipments by Microsoft
Corp. of software containing
Java programming language.

U.S. District Judge Ronald
Whyte of San Jose, California
granted an injunction to Sun
Microsystems Inc. last November.
He said Sun was likely to show that
Microsoft had violated a licensing
agreement allowing it to use Sun’s
version of Java in its products.

The injunction prohibited
Microsoft from distributing
products that used Sun’s Java
copyrights unless Microsoft
conformed to Sun’s standards
for Java.

The 9th U.S. Circuit Court of
Appeals ruled that there was evi-
dence to support Whyte’s con-
clusion that Microsoft had vio-
lated the agreement by design-
ing a version of Java incompati-
ble with other software. But the
court also said Whyte failed to
explain why the alleged violation
was a copyright infringement,
rather than a breach of contract.

The distinction is important. A
contract violation can justify an
injunction against product ship-
ments only if the innocent party
can show it is being harmed. Oth-
erwise, it must allow the ship-
ments, then sue for damages.

Java User’s Group Formed
in San Diego
(San Diego, CA) – The San Diego
Java Users Group (JUG), a non-
profit organization founded in
January 1999, meets once a
month to address the hottest
Java topics and breakthroughs. A
typical meeting includes techni-
cal pre-
senta-
tions and
an open
Q&A ses-
sion. Past
speakers
include
representatives from Sun, DTAI,
Inc., Persistence Software,
Symantec and Inprise.

The group meets at the Holiday
Inn in San Diego’s historical Old
Town on the third Tuesday of each
month. www.jug.dtai.com

Step 1 Acquires Unix
Systems Administrators
(Kansas City, KS) – Step 1, Inc.,
Kansas City’s premier provider of
training to computer profession-
als, has acquired Unix Systems
Administrators (USA), an Over-
land Park company providing
UNIX operating system training.

Step 1’s regularly scheduled
one-week courses range from the
fundamentals of C++ to advanced
topics in Java, Visual Basic, Del-
phi, and object-oriented analysis
and design. With the acquisition

of USA, Step 1 becomes the only
SCO-authorized UNIX trainer in a
five-state region.

Step 1 courses are taught at
their state-of-the-art training
facility in Overland Park, Kansas.
New classes form every month.
www.step1inc.com

Internet Access Methods
Introduces New Java App
and Computer Training
Courses
(San Francisco, CA) – IAM There, a
new distance presentation tool
with a call center server, is now
available
from Inter-
net Access
Methods. The Java-based technol-
ogy provides the ability to create
self-modifying dynamic content
and integrate access to support
from live expert help. www.iam-
there.com

In related news IAM Consulting
has released a new distance train-
ing format of courses and lectures
by Java expert Gerry Seidman.
Using IAM There technology, the
multimedia presentations com-
bine immediate phone access to
expert help with the flexibility of
offline computer-based training.
www.iam-training.com

A new aecXML working
group has been formed to
develop schemas for the
exchange of AEC-specific busi-
ness-to-business information.
The aecXML
schema work
is being
designed to
assist soft-
ware companies, construction
firms, academic institutions,
building product manufactur-
ers and information publishers.

Bentley Systems has devel-
oped an initial specification for
aecXML, a framework of XML-
based schemas to facilitate com-
munications related to design-

ing, specifying, estimating,
sourcing, installing and main-
taining construction products
and materials over the Inter-
net. The working group is

looking for interested parties to
review and exchange ideas on
the initial aecXML specification.
www.aecXML.org

aecXML Work Group Formed

(Tustin, CA) – Scantron Corpo-
ration and V-Systems, Inc.
(VSI), have formed a strategic
alliance to market Scantron
FormTrap and VSI-FAX as a
total enterprisewide document
formatting and faxing solution.

The two applications will
work in concert to intercept
data from an organization’s
main database, format the data
in a document file and then dis-
tribute via fax. FormTrap trans-
fers the information requested
from the database into designat-
ed fields within the document.
While formatting the document,
a user may edit text and add
custom graphics to enhance its

presentation. Once the docu-
ment is complete, it resides on
the printer server, or any net-
work directory, ready to be dis-
tributed by the VSI-FAX system.
VSI-FAX converts the print-
ready output (document) to a
fax format and distributes the
document according to the
embedded fax parameters.
www.scantron.com and
www.vsi.com

Scantron and V-Systems
Form Alliance

75SEPTEMBER 1999

ADVERTISER URL PH PG

9NETAVENUE, INC. WWW.9NETAVE.COM 888.9NETAVE 55

AVANSOFT, INC. WWW.AVANTSOFT 40.-530.5705 44

BEA WEBLOGIC WWW.WEBLOGIC.BEASYS.COM 800.817.4BEA 2

BLUE SKY SOFTWARE WWW.BLUE-SKY.COM 800.559.4423 17

BORLAND.COM WWW.INTERBASE.COM/PRODUCTS/DEMOJDJ.HTML 800.451.7788 x7183 25

CAREER CENTRAL WWW.CAREERCENTRAL.COM/JAVA 888.946.3822 64

CAREER OPPORTUNITY ADVERTISERS 800.846.7591 76-85

CEREBELLUM SOFTWARE WWW.CEREBELLUMSOFT.COM 888.862.9898 23

DEVELOPMENTOR WWW.DEVELOP.COM 800.699.1932 71

ELIXIR TECHNOLOGY WWW.ELIXIR.COM.SG 65 532.4300 47

ENTERPRISESOFT WWW.ENTERPRISESOFT.COM 510.742.6700 11

FALL INTERNET WORLD 99 WWW.EVENTS.INTERNET.COM/FALL99 800.500.1959 65

FORCE 5 SOFTWARE, INC. WWW.FORCE5.COM 408.735.0665 37

HOSTPRO WWW.HOSTPRO.NET 888.638.5831 57

IAM CONSULTING WWW.IAM-TRAINING.COM 212.580.2700 33

INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 732.235.0137 43

INSIGNIA SOLUTIONS, INC. WWW.INSIGNIA.COM 800.848.7677 45

INSTANTIATIONS INC. WWW.INSTANTIATIONS.COM 800.808.3737 58

JAVA BUYER’S GUIDE WWW.JAVABUYERSGUIDE.COM 914.735.0300 67

JAVA DEVELOPER’S JOURNAL WWW.JAVADEVELOPERSJOURNAL.COM 914.735.0300 71

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 59

KL GROUP INC. WWW.KLGROUP.COM/HUNT 888.328.9597 19

KL GROUP INC. WWW.KLGROUP.COM/PAGELAYOUT 888.328.9599 88

METAMATA, INC WWW.METAMATA.COM 510.796.0915 53

OASIS WWW.OASIS-OPEN.ORG 412.963.1479 29

OBJECT INTERNATIONAL SOFTWARE WWW.TOGETHERJ.COM 919.772.9350 35

OBJECT MANAGEMENT GROUP WWW.OMG.ORT 508.820.4300 69

POINTBASE WWW.POINTBASE.COM 650.570.6560 6

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 3

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 63

OBJECTSWITCH CORPORATION WWW.OBJCTSWITHC.COM 415.925.3460 21

ONEREALM SOFTWARE WWW.ONEREALM.COM/JDJ 303.247.1284 7

RIVERTON SOFTWARE CORPORATION WWW.RIVERTON.COM 781.229.0070 41

SLANGSOFT WWW.SLANGSOFT.COM 972.375.18127 14

STEP 1, INC. WWW.STEP1INC.COM 888.383.1965 59

SUN MICROSYSTEMS, INC. WWW.SUN.COM/SERVICE/SUNED 800.422.8020 4

SOFTWIRED INC. WWW.JAVAMESSAGING.COM/IBUS (41)1.445.23101 28

SPECIALIZED SOFTWARE WWW.SPECIALIZEDSOFTWARE.COM/JDJ/ 800.328.2825 x6576 73

SYBASE, INC. WWW.SYBASE.COM 800.8.SYBASE 15

TIDESTONE TECHNOLOGIES, INC. WWW.TIDESTONE.COM 888.880.0665 27

VISUALIZE INC. WWW.VISUALIZEINC.COM 602.861.0999 71

VSI WWW.VSI.COM/BREEZE 800.556.4VSI 13

WORLDWIDE INTERNET PUBLISHING WWW.WIPC.NET 800.785.6170 51

ADVERTISINGINDEXBob Sutor Radio Interview (continued from page 46)

Q:
A:
Q:
A:

Q:
A:
Q:
A:

Sutor: XML.org isn’t going to concern itself
initially with looking at Java issues. It will
keep itself to XML and work on the industry
standard. That is already a big enough prob-
lem. Getting back to the first question, Java
and XML are complementary. There are a
lot of good tools for using them together. If
you go to IBM’s alphaWorks site, there are
now 26 technologies available for doing
XML, most of them in Java. Basically, Java is
a great tool for dealing with XML.

Sagar: Why is that?
Sutor: You want to use them in pretty much
the same sort of environment. The same
things that make Java so attractive: the inde-
pendence of platforms and the interoperability.

Sagar: Let’s talk about the organization
of OASIS. There are different industries
that are involved in it. How do you make
sure it stays unbiased and doesn’t have
more representation from one industry
to the other? I’m not talking specifically
about IBM. I’m just talking about who-
ever gets in. What’s the way you define
committee selections and so forth?
Sutor: We’re still working on the process.
In fact, we’re looking at what happens in
other organizations and we’ll be building
our process from that. You also have to
remember that XML.org is part of a much
larger OASIS, which already has about 90
numbers. We already have a lot of input.

XML.org is not independent of OASIS, but
rather an activity within it. So in addition to
the partners in XML.org, we’ve got compa-
nies in OASIS such as Microsoft that have
not signed up for XML.org, but they can
comment on the standards process we are
developing. Of course, we would welcome
their support for XML.org and their joining
the XML.org steering committee.

Sagar: What is the exact relationship
between OASIS and XML.org? Is
XML.org just a Web site for OASIS or
is it a totally separate entity?
Sutor: No, it’s not a separate entity at all. We
refer to it as an initiative, which means a pro-
ject that is going on within OASIS. So today,
basically, it’s an organization that operates
within OASIS. It doesn’t have separate bylaws,
so ultimately the OASIS board of directors
makes the final decisions and has the fiscal
responsibility. XML.org was formed initially by
nine partners who put up $100,000 (large
companies) or $25,000 (small companies)
each to get this thing started. It’s much more
specific than the general OASIS. These people
have helped to get it kick-started and so we
can build the necessary infrastructure.

JDJ: I’m assuming we can go to
XML.org to learn more.
Sutor: That’s correct – and every day the site
will grow to become a real portal for learning
more about using XML in industry.

Recieve the
“JDJ Digital Edition”
FREE! when you...

$39year/12 issues

JavaDevelopersJournal.com

1800-513-7111
subscribe online for faster service
subscribe@sys-con.com

76 SEPTEMBER 1999

Employment
Ad

77SEPTEMBER 1999

Employment
Ad

78 SEPTEMBER 1999

Employment
Ad

79SEPTEMBER 1999

Employment
Ad

80 SEPTEMBER 1999

Employment
Ad

81SEPTEMBER 1999

Employment
Ad

82 SEPTEMBER 1999

Employment
Ad

83SEPTEMBER 1999

Employment
Ad

84 SEPTEMBER 1999

Employment
Ad

85SEPTEMBER 1999

Employment
Ad

86 SEPTEMBER 1999

W
rite once, run anywhere” is probably the
single-most repeated description of what
Java is supposed to be about. It has been
one of the cornerstones of Java’s massive
edifice of hype. However, like all hype,
there’s both truth and fiction to WORA.

The truth is that Java offers true cross-platform binary compati-
bility via the Java Virtual Machine and a rich set of standardized class
libraries. Java has provided the ability to take an application from
one platform to another without so much as recompilation like
almost no other language or programming environment.

The unfortunate reality of WORA is that without a JVM and a set of
associated libraries (which contain platform-specific native code),
your Java bytecode isn’t going anywhere. This is partly offset, of
course, by the fact that for most operating systems, the OS vendors
are quite willing and able to supply at least one, if not more, different
JVMs for their platform. For example, at least four different JDKs are
available for Windows (one each from Microsoft and IBM and two
from Sun) and multiple JVMs from multi-
ple companies. But if you’re using some-
thing off the beaten track, like BeOS,
you’re out of luck.

The other unfortunate side effect of the
WORA hype is Java’s ill-fated inclusion in
popular Web browsers, namely Netscape
Navigator and Internet Explorer. It’s true
that Java’s rapid explosion in popularity is
due largely to the wide exposure Java
obtained by being bundled into the one
piece of software that just about everyone
has on their computer, the Web browser.
Unfortunately, as Java’s abilities have
grown through new features and new libraries (like Swing and
Java2D), the ability to deploy real Java applications via browsers has-
n’t kept up. Even more unfortunately (and in my humble opinion
here lies the real problem), this fact is virtually unknown to a lot of
Java programmers, developers, architects and development man-
agers. Somehow the true power of Java’s write once, run anywhere
abilities has become misunderstood to mean “we can ignore deploy-
ment problems – just run it as an applet!” In case I’m not being clear
enough here, let me make it clear – applets don’t work. Not for real
applications.

The true power of Java becomes apparent when you look at real
distributed application architectures using toolkits like Jini and Java-
Spaces. JavaSpaces lets applications post not only data to a space
shared by multiple distributed systems, but also code – it’s a generic
system that allows clients and servers (if those terms even mean any-
thing in the context of applications written using JavaSpaces) to
dynamically request just about anything. Jini is more than just a set
of Java APIs, it’s a vision of connecting devices together, and letting
them discover each other independently and share code and data

seamlessly. JavaSpaces itself is built on top of parts of Jini. In a recent
interview Bill Joy, chief scientist of Sun Microsystems, admits that
the concept of mobile code and a vision of Jini were in their minds
when Java was originally directed onto the Web, back in ’94 and ’95.
The concept of applets in this context is a brilliant marketing move,
exposing everyone to Java and generating a huge amount of excite-
ment. But realistically, without a mechanism for caching code and
doing version management, you can’t write a real application using
applets. If you have a high-speed network and a small number of
users, sure, they won’t mind downloading a few hundred kilobytes of
code (or more) every time they want to run the application. But once
you have a serious number of users, a realistic, overstressed LAN and
applications that are moving into the range of megabytes in size, the
applet model just breaks down. Not to mention the incompatibilities
between different browsers’ Java implementations, making it diffi-
cult to do things like accessing the local disk or printing. And what
about remote users, who are connected via low-speed links or who
may spend significant periods of time completely disconnected

from the network? There’s a long list of
problems.

None of this would matter much if no
one was trying to use applets. But people
are. All too often I’ll be talking with a Java
developer or reading a post on one of the
Java newsgroups or mailing lists and I’ll
hear (or read) something that starts like
this: “I’m having trouble with my applet.
It’s 947 Kb and it doesn’t appear to be
printing the Swing components correctly
under Internet Explorer….” There’s prob-
ably a solution for this developer’s prob-
lem, but I think it’s more than just anoth-

er problem – it’s a symptom. The fact is, it’s hard to deploy software.
Getting applications from the hands of the development team to the
hands of hundreds, thousands or tens of thousands of users is a real-
ly hard task. Which is why so many developers cling to applets in the
face of so many problems – they’re looking for anything to help them
with the problem of getting applications out and kept up to date on
a regular basis.

The real solution is to use a more tried-and-true deployment tech-
nology, like automatic installers, or a more sophisticated enterprise-
scale application deployment solution. Unfortunately, just as
deployment is often the last thing that developers think about, it’s
one of the last major issues that has yet to be solved for the Java com-
munity at large. “Write once, run anywhere” may be true, but getting
there is still half the battle.

AUTHOR BIO
Ethan Henry, KL Group’s Java evangelist, can be reached at egh@klgroup.com.

While WORA May Be True,
It’s Still Half the Battle

WRITTEN BY ETHAN HENRY

egh@klgroup.com

I M H O

87SEPTEMBER 1999

Object
Switch

www.objectswitch.com

88 SEPTEMBER 1999

KL Group
www.klgroup.com

